当前位置: X-MOL 学术Nano-Micro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction
Nano-Micro Letters ( IF 31.6 ) Pub Date : 2024-05-17 , DOI: 10.1007/s40820-024-01426-0
Huitao Yu , Lianqiang Peng , Can Chen , Mengmeng Qin , Wei Feng

Vertically oriented carbon structures constructed from low-dimensional carbon materials are ideal frameworks for high-performance thermal interface materials (TIMs). However, improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task. Herein, an orthotropic three-dimensional (3D) hybrid carbon network (VSCG) is fabricated by depositing vertically aligned carbon nanotubes (VACNTs) on the surface of a horizontally oriented graphene film (HOGF). The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy. After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsiloxane (PDMS), VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained. The highest in-plane and through-plane thermal conductivities of the composites are 113.61 and 24.37 W m−1 K−1, respectively. The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance. In addition, the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3% compared to that of a state-of-the-art thermal pad. This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.



中文翻译:


用于高效双向热传导的可调节正交各向异性 3D 混合连续碳网络



由低维碳材料构建的垂直定向碳结构是高性能热界面材料(TIM)的理想框架。然而,提高垂直取向碳结构的界面传热效率是一项具有挑战性的任务。在此,通过在水平取向石墨烯薄膜(HOGF)的表面上沉积垂直排列的碳纳米管(VACNT)来制造正交异性三维(3D)混合碳网络(VSCG)。然后通过退火策略优化 VACNT 和 HOGF 之间的界面相互作用。通过调节VACNT的取向结构并用聚二甲基硅氧烷(PDMS)填充VSCG,获得了具有优异3D导热性能的VSCG/PDMS复合材料。复合材料的最高面内和穿过面导热系数分别为113.61和24.37 W m −1 K −1 。 HOGF 的高接触面积和 VACNT 的良好压缩性使 VSCG/PDMS 复合材料具有低热阻。此外,与最先进的导热垫相比,VSCG/PDMS复合材料在TIM性能中的界面传热效率提高了71.3%。这种新的结构设计有可能实现高性能TIM,满足界面传热过程中高导热率和低接触热阻的需求。

更新日期:2024-05-17
down
wechat
bug