当前位置:
X-MOL 学术
›
Chemosphere
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Green-synthesized lignin nanoparticles enhance Zea mays resilience to salt stress by improving antioxidant metabolism and mitigating ultrastructural damage
Chemosphere ( IF 8.1 ) Pub Date : 2024-05-14 , DOI: 10.1016/j.chemosphere.2024.142337 Muhammad Haseeb Javaid 1 , Nana Chen 1 , Muhammad Umair Yasin 1 , Xingming Fan 2 , Asifa Neelam 3 , Muhammad Rehman 1 , Zulqarnain Haider 1 , Syed Asad Hussain Bukhari 3 , Raheel Munir 1 , Irshan Ahmad 1 , Yinbo Gan 1
Chemosphere ( IF 8.1 ) Pub Date : 2024-05-14 , DOI: 10.1016/j.chemosphere.2024.142337 Muhammad Haseeb Javaid 1 , Nana Chen 1 , Muhammad Umair Yasin 1 , Xingming Fan 2 , Asifa Neelam 3 , Muhammad Rehman 1 , Zulqarnain Haider 1 , Syed Asad Hussain Bukhari 3 , Raheel Munir 1 , Irshan Ahmad 1 , Yinbo Gan 1
Affiliation
![]() |
Soil salinity poses a substantial threat to agricultural productivity, resulting in far-reaching consequences. Green-synthesized lignin nanoparticles (LNPs) have emerged as significant biopolymers which effectively promote sustainable crop production and enhance abiotic stress tolerance. However, the defensive role and underlying mechanisms of LNPs against salt stress in Zea mays remain unexplored. The present study aims to elucidate two aspects: firstly, the synthesis of lignin nanoparticles from alkali lignin, which were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), Fourier Infrared Spectroscopy (FT-IR) and Energy Dispersive X-Ray Spectroscopy (EDX). The results confirmed the purity and morphology of LNPs. Secondly, the utilization of LNPs (200 mg/L) in nano priming to alleviate the adverse effects of NaCl (150 mM) on Zea mays seedlings. LNPs significantly reduced the accumulation of Na+ (17/21%) and MDA levels (21/28%) in shoots/roots while increased lignin absorption (30/31%), resulting in improved photosynthetic performance and plant growth. Moreover, LNPs substantially improved plant biomass, antioxidant enzymatic activities and upregulated the expression of salt-tolerant genes (ZmNHX3 (1.52 & 2.81 FC), CBL (2.83 & 3.28 FC), ZmHKT1 (2.09 & 4.87 FC) and MAPK1 (3.50 & 2.39 FC) in both shoot and root tissues. Additionally, SEM and TEM observations of plant tissues confirmed the pivotal role of LNPs in mitigating NaCl-induced stress by reducing damages to guard cells, stomata and ultra-cellular structures. Overall, our findings highlight the efficacy of LNPs as a practical and cost-effective approach to alleviate NaCl-induced stress in Zea mays plants. These results offer a sustainable agri-environmental strategy for mitigating salt toxicity and enhancing crop production in saline environments.
中文翻译:
绿色合成的木质素纳米颗粒通过改善抗氧化代谢和减轻超微结构损伤来增强 Zea mays 对盐胁迫的抵抗力
土壤盐分对农业生产力构成重大威胁,导致深远的后果。绿色合成的木质素纳米颗粒 (LNP) 已成为重要的生物聚合物,可有效促进可持续作物生产并增强非生物胁迫耐受性。然而,LNPs 对玉米盐胁迫的防御作用和潜在机制仍未得到探索。本研究旨在阐明两个方面:首先,利用场发射扫描电子显微镜 (FE-SEM)、透射电子显微镜 (TEM)、傅里叶红外光谱 (FT-IR) 和能量色散 X 射线光谱 (EDX) 对碱木质素合成木质素纳米颗粒进行了表征。结果证实了 LNPs 的纯度和形态。其次,利用 LNP (200 mg/L) 在纳米引发中减轻 NaCl (150 mM) 对玉米幼苗的不利影响。LNPs 显着降低了芽/根中 Na+ (17/21%) 和 MDA 水平 (21/28%) 的积累,同时增加了木质素吸收 (30/31%),从而改善了光合性能和植物生长。此外,LNPs显著提高了植物生物量、抗氧化酶活性,并上调了耐盐基因(ZmNHX3 (1.52 & 2.81 FC)、CBL (2.83 & 3.28 FC)、ZmHKT1 (2.09 & 4.87 FC) 和 MAPK1 (3.50 & 2.39 FC) 在芽和根组织中的表达。此外,植物组织的 SEM 和 TEM 观察证实了 LNP 通过减少对保卫细胞、气孔和超细胞结构的损伤,在减轻 NaCl 诱导的应激方面发挥着关键作用。总体而言,我们的研究结果强调了 LNP 作为缓解玉米植物中 NaCl 诱导的胁迫的实用且具有成本效益的方法的功效。 这些结果为减轻盐毒性和提高盐碱环境中的作物产量提供了一种可持续的农业环境策略。
更新日期:2024-05-14
中文翻译:

绿色合成的木质素纳米颗粒通过改善抗氧化代谢和减轻超微结构损伤来增强 Zea mays 对盐胁迫的抵抗力
土壤盐分对农业生产力构成重大威胁,导致深远的后果。绿色合成的木质素纳米颗粒 (LNP) 已成为重要的生物聚合物,可有效促进可持续作物生产并增强非生物胁迫耐受性。然而,LNPs 对玉米盐胁迫的防御作用和潜在机制仍未得到探索。本研究旨在阐明两个方面:首先,利用场发射扫描电子显微镜 (FE-SEM)、透射电子显微镜 (TEM)、傅里叶红外光谱 (FT-IR) 和能量色散 X 射线光谱 (EDX) 对碱木质素合成木质素纳米颗粒进行了表征。结果证实了 LNPs 的纯度和形态。其次,利用 LNP (200 mg/L) 在纳米引发中减轻 NaCl (150 mM) 对玉米幼苗的不利影响。LNPs 显着降低了芽/根中 Na+ (17/21%) 和 MDA 水平 (21/28%) 的积累,同时增加了木质素吸收 (30/31%),从而改善了光合性能和植物生长。此外,LNPs显著提高了植物生物量、抗氧化酶活性,并上调了耐盐基因(ZmNHX3 (1.52 & 2.81 FC)、CBL (2.83 & 3.28 FC)、ZmHKT1 (2.09 & 4.87 FC) 和 MAPK1 (3.50 & 2.39 FC) 在芽和根组织中的表达。此外,植物组织的 SEM 和 TEM 观察证实了 LNP 通过减少对保卫细胞、气孔和超细胞结构的损伤,在减轻 NaCl 诱导的应激方面发挥着关键作用。总体而言,我们的研究结果强调了 LNP 作为缓解玉米植物中 NaCl 诱导的胁迫的实用且具有成本效益的方法的功效。 这些结果为减轻盐毒性和提高盐碱环境中的作物产量提供了一种可持续的农业环境策略。