当前位置:
X-MOL 学术
›
Int. J. Numer. Anal. Methods Geomech.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An extended graphical solution for undrained cylindrical cavity expansion in K0‐consolidated Mohr–Coulomb soil
International Journal for Numerical and Analytical Methods in Geomechanics ( IF 3.4 ) Pub Date : 2024-05-15 , DOI: 10.1002/nag.3760
Xu Wang 1 , Sheng‐Li Chen 1 , Yan‐Hui Han 2 , Younane N. Abousleiman 3 , Hai Lin 1
International Journal for Numerical and Analytical Methods in Geomechanics ( IF 3.4 ) Pub Date : 2024-05-15 , DOI: 10.1002/nag.3760
Xu Wang 1 , Sheng‐Li Chen 1 , Yan‐Hui Han 2 , Younane N. Abousleiman 3 , Hai Lin 1
Affiliation
This paper develops a general and complete solution for the undrained cylindrical cavity expansion problem in nonassociated Mohr‐Coulomb soil under nonhydrostatic initial stress field (i.e., arbitrary values of the earth pressure coefficient), by expanding a unique and efficient graphical solution procedure recently proposed by Chen and Wang in 2022 for the special in situ stress case with . It is interesting to find that the cavity expansion deviatoric stress path is always composed of a series of piecewise straight lines, for all different case scenarios of K 0 being involved. When the cavity is sufficiently expanded, the stress path will eventually end, exclusively, in a major sextant with Lode angle θ in between and or on the specific line of . The salient advantage/feature of the present general graphical approach lies in that it can deduce the cavity expansion responses in full closed form, nevertheless being free of the limitation of the intermediacy assumption for the vertical stress and of the difficulty existing in the traditional zoning method that involves cumbersome, sequential determination of distinct Mohr–Coulomb plastic regions. Some typical results for the desired cavity expansion curves and the limit cavity pressure are presented, to investigate the impacts of soil plasticity parameters and the earth pressure coefficient on the cavity responses. The proposed graphical method/solution will be of great value for the interpretation of pressuremeter tests in cohesive‐frictional soils.
中文翻译:
K0 固结莫尔-库仑土中不排水圆柱形空腔膨胀的扩展图形解决方案
本文通过扩展最近提出的独特且有效的图形求解程序,为非静水初始应力场(即土压力系数的任意值)下非关联莫尔-库仑土中的不排水圆柱形空腔膨胀问题开发了通用且完整的解决方案Chen 和 Wang 在 2022 年针对特殊地应力情况进行了研究。有趣的是,对于涉及 K0 的所有不同情况,型腔膨胀偏应力路径始终由一系列分段直线组成。当空腔充分膨胀时,应力路径最终将完全结束于主六分仪,其洛德角 θ 在 和 之间或在 的特定线上。目前通用图形方法的显着优点/特点在于,它可以推导出全封闭形式的空腔膨胀响应,但不受竖向应力中间假设的限制以及传统分区方法中存在的困难这涉及到对不同莫尔-库仑塑性区域进行繁琐的连续测定。给出了所需空腔膨胀曲线和极限空腔压力的一些典型结果,以研究土体塑性参数和土压力系数对空腔响应的影响。所提出的图形方法/解决方案对于解释粘性摩擦土壤中的压力计测试具有重要价值。
更新日期:2024-05-15
中文翻译:
K0 固结莫尔-库仑土中不排水圆柱形空腔膨胀的扩展图形解决方案
本文通过扩展最近提出的独特且有效的图形求解程序,为非静水初始应力场(即土压力系数的任意值)下非关联莫尔-库仑土中的不排水圆柱形空腔膨胀问题开发了通用且完整的解决方案Chen 和 Wang 在 2022 年针对特殊地应力情况进行了研究。有趣的是,对于涉及 K0 的所有不同情况,型腔膨胀偏应力路径始终由一系列分段直线组成。当空腔充分膨胀时,应力路径最终将完全结束于主六分仪,其洛德角 θ 在 和 之间或在 的特定线上。目前通用图形方法的显着优点/特点在于,它可以推导出全封闭形式的空腔膨胀响应,但不受竖向应力中间假设的限制以及传统分区方法中存在的困难这涉及到对不同莫尔-库仑塑性区域进行繁琐的连续测定。给出了所需空腔膨胀曲线和极限空腔压力的一些典型结果,以研究土体塑性参数和土压力系数对空腔响应的影响。所提出的图形方法/解决方案对于解释粘性摩擦土壤中的压力计测试具有重要价值。