当前位置: X-MOL 学术Nat. Rev. Cancer › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A guide to artificial intelligence for cancer researchers
Nature Reviews Cancer ( IF 72.5 ) Pub Date : 2024-05-16 , DOI: 10.1038/s41568-024-00694-7
Raquel Perez-Lopez 1 , Narmin Ghaffari Laleh 2 , Faisal Mahmood 3, 4, 5, 6, 7, 8 , Jakob Nikolas Kather 2, 9, 10
Affiliation  

Artificial intelligence (AI) has been commoditized. It has evolved from a specialty resource to a readily accessible tool for cancer researchers. AI-based tools can boost research productivity in daily workflows, but can also extract hidden information from existing data, thereby enabling new scientific discoveries. Building a basic literacy in these tools is useful for every cancer researcher. Researchers with a traditional biological science focus can use AI-based tools through off-the-shelf software, whereas those who are more computationally inclined can develop their own AI-based software pipelines. In this article, we provide a practical guide for non-computational cancer researchers to understand how AI-based tools can benefit them. We convey general principles of AI for applications in image analysis, natural language processing and drug discovery. In addition, we give examples of how non-computational researchers can get started on the journey to productively use AI in their own work.



中文翻译:


癌症研究人员的人工智能指南



人工智能(AI)已经商品化。它已经从一种专业资源发展成为癌症研究人员易于使用的工具。基于人工智能的工具可以提高日常工作流程中的研究效率,但也可以从现有数据中提取隐藏信息,从而实现新的科学发现。建立这些工具的基本知识对于每个癌症研究人员都是有用的。专注于传统生物科学的研究人员可以通过现成的软件使用基于人工智能的工具,而那些更倾向于计算的研究人员可以开发自己的基于人工智能的软件管道。在本文中,我们为非计算癌症研究人员提供了实用指南,以了解基于人工智能的工具如何使他们受益。我们传达人工智能在图像分析、自然语言处理和药物发现中应用的一般原理。此外,我们还举例说明非计算研究人员如何开始在自己的工作中高效地使用人工智能。

更新日期:2024-05-16
down
wechat
bug