当前位置: X-MOL 学术IEEE J. Sel. Area. Comm. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Dual-Signaling Architecture for Enhancing Noise Resilience in Floquet Engineering-Based Chip-Scale Wireless Communication
IEEE Journal on Selected Areas in Communications ( IF 13.8 ) Pub Date : 5-13-2024 , DOI: 10.1109/jsac.2024.3399206
Kosala Herath 1 , Ampalavanapillai Nirmalathas 2 , Sarath D. Gunapala 3 , Malin Premaratne 1
Affiliation  

In this study, we introduce a novel theoretical framework for detecting and decoding Terahertz (THz) frequency chip-scale wireless communication signals. By considering the quantum behavior of charge carriers exposed to intense time-periodic radiation, we employ Floquet engineering techniques for system analysis. Using a two-dimensional semiconductor quantum well (2DSQW) based voltage divider, we showcase the detection and decoding of frequency modulated signals at nanoscale dimensions. Exploring noise impact within the Floquet-2DSQW framework, we identify voltage shifts that compromise data demodulation in single signaling setups. To address this challenge, we suggest a dynamic dual-signaling Floquet-2DSQW architecture that adapts the reference voltage to prevalent noise effects in chip-scale environments. Through a numerical analysis configured for Gigabit per second (Gbps) data transmission in the THz carrier frequency range, we show that our dual-signaling approach surpasses conventional single signaling setups, significantly reducing the bit error rate across various signal-to-noise ratio (SNR) values. A comprehensive parametric study emphasizes the importance of correlated noise effects at two 2DSQW receivers for enhanced performance. Our findings offer valuable insights for advancing nanoscale wireless communication within or between chips in noisy conditions, with potential applications in high-speed, reliable data transfer.

中文翻译:


用于增强基于 Floquet 工程的芯片级无线通信的抗噪能力的双信令架构



在这项研究中,我们介绍了一种用于检测和解码太赫兹(THz)频率芯片级无线通信信号的新颖理论框架。通过考虑暴露在强烈时间周期辐射下的载流子的量子行为,我们采用 Floquet 工程技术进行系统分析。使用基于二维半导体量子阱 (2DSQW) 的分压器,我们展示了纳米级尺寸的调频信号的检测和解码。通过探索 Floquet-2DSQW 框架内的噪声影响,我们确定了影响单个信令设置中数据解调的电压变化。为了应对这一挑战,我们建议采用动态双信号 Floquet-2DSQW 架构,该架构可以使参考电压适应芯片级环境中普遍存在的噪声影响。通过针对太赫兹载波频率范围内的千兆位每秒(Gbps)数据传输配置的数值分析,我们表明我们的双信令方法超越了传统的单信令设置,显着降低了各种信噪比的误码率(信噪比)值。一项全面的参数研究强调了两个 2DSQW 接收器的相关噪声效应对于增强性能的重要性。我们的研究结果为在噪声条件下推进芯片内部或芯片之间的纳米级无线通信提供了宝贵的见解,并在高速、可靠的数据传输方面具有潜在的应用。
更新日期:2024-08-19
down
wechat
bug