Journal of the American Mathematical Society ( IF 3.5 ) Pub Date : 2024-02-22 , DOI: 10.1090/jams/1045 Toni Annala , Marc Hoyois , Ryomei Iwasa
We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable
中文翻译:
代数 Cobordism 和代数 K 论的 Conner-Floyd 同构
我们制定并证明了任意 qcqs 派生方案的代数 K 理论的 Conner-Floyd 同构。为此,我们研究了一个稳定的 ∞ \infty 类非 A 1 \mathbb {A}^1 不变动机谱,结果证明它等同于∞ \infty 类满足基本放大切除的基本动机谱,之前由第一和第三作者介绍。我们证明这个 ∞ \infty -category 满足 P 1 \mathbb {P}^1 -同伦不变性和加权 A 1 \mathbb {A}^1 -同伦不变性,我们用它来代替 A 1 \mathbb {A}^1 -同伦不变性,以获得 A 1 \mathbb {A}^1 -同伦理论的几个关键结果的类似物。这些特别允许我们定义一个普遍的定向动机 E ∞ \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} 。然后,我们证明 qcqs 推导方案 X X 的代数 K 理论可以通过康纳-弗洛伊德同构 \[ M G L ∗ ∗ ( X ) ⊗ L Z [ β ± 1 ] ≃ K ∗ ∗ ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \] 其中 L \mathrm {L}{} 是拉扎德环,K p , q ( X ) = K 2 q − p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) .最后,我们证明了 M G L \mathrm {MGL} 的周期化版本的 Snaith 定理。