当前位置: X-MOL 学术Child Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mitigating invalid data bias in the estimation of sexual orientation disparities in a survey of youth in US and Canada
Child Development ( IF 3.9 ) Pub Date : 2024-05-10 , DOI: 10.1111/cdev.14111
Jorge Andrés Delgado-Ron 1, 2 , Thiyaana Jeyabalan 1, 2 , Sarah Watt 1, 2 , Travis Salway 1, 2, 3
Affiliation  

The current commentary explored the applicability of the methods described in “Mitigating invalid and mischievous survey responses: A registered report examining risk disparities between heterosexual and lesbian, gay, bisexual, or questioning youth” by Dr. Joseph Cimpian and colleagues to explore sexual orientation disparities in preexisting data from a nonprobability sample. Understanding Affirming Communities, Relationships, and Networks was a study of mostly White (77.4%) 9674 sexual and gender-minoritized youth aged 15–29 from the US and Canada. The influence of invalid data on the prevalence ratios of four health outcomes was assessed. The methods yielded similar effects to the original paper. The accuracy varied by outcome prevalence and was robust to misspecification of the model. Therefore, the applicability of this method to preexisting data seems feasible.

中文翻译:


减少美国和加拿大青少年调查中性取向差异估计中的无效数据偏差



目前的评论探讨了 Joseph Cimpian 博士及其同事在“缓解无效和恶作剧的调查回复:一份检查异性恋与女同性恋、男同性恋、双性恋或有问题的青少年之间的风险差异的注册报告”中描述的方法的适用性,以探讨来自非概率样本的预先存在的数据中的性取向差异。Understanding Affirming Communities, Relationships, and Networks 是一项主要针对白人 (77.4%) 的 9674 名来自美国和加拿大的 15-29 岁性和性别少数化青年的研究。评估了无效数据对 4 种健康结局患病率的影响。这些方法产生了与原始论文相似的效果。准确性因结局发生率而异,并且对模型的错误指定具有稳健性。因此,这种方法对预先存在的数据的适用性似乎是可行的。
更新日期:2024-05-10
down
wechat
bug