当前位置: X-MOL 学术IEEE Geosci. Remote Sens. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Estimating Soil Parameters From Hyperspectral Images: A benchmark dataset and the outcome of the HYPERVIEW challenge
IEEE Geoscience and Remote Sensing Magazine ( IF 16.2 ) Pub Date : 2024-05-09 , DOI: 10.1109/mgrs.2024.3394040
Jakub Nalepa 1 , Lukasz Tulczyjew 2 , Bertrand Le Saux 3 , Nicolas Longépé 4 , Bogdan Ruszczak 5 , Agata M. Wijata 1 , Krzysztof Smykala 6 , Michal Myller 2 , Michal Kawulok 1 , Ridvan Salih Kuzu 7 , Frauke Albrecht 8 , Caroline Arnold 9 , Mohammad Alasawedah 10 , Suzanne Angeli 11 , Delphine Nobileau 12 , Achille Ballabeni 13 , Alessandro Lotti 13 , Alfredo Locarini 13 , Dario Modenini 13 , Paolo Tortora 13 , Michal Gumiela 2
Affiliation  

Enhancing agricultural methods through the utilization of Earth observation and artificial intelligence (AI) has emerged as a significant concern. The ability to quantify soil parameters on a large scale can play a pivotal role in optimizing the fertilization process. While techniques for noninvasive estimation of soil parameters from hyperspectral images (HSIs) exist, their validation typically occurs across different datasets and employs varying validation protocols. This diversity renders them inherently challenging (or even impossible) to compare objectively.

中文翻译:


从高光谱图像估计土壤参数:基准数据集和 HYPERVIEW 挑战的结果



通过利用地球观测和人工智能(AI)加强农业方法已成为一个重要问题。大规模量化土壤参数的能力可以在优化施肥过程中发挥关键作用。虽然存在从高光谱图像 (HSI) 非侵入性估计土壤参数的技术,但它们的验证通常发生在不同的数据集上,并采用不同的验证协议。这种多样性使得它们本质上具有挑战性(甚至不可能)进行客观比较。
更新日期:2024-05-09
down
wechat
bug