当前位置:
X-MOL 学术
›
Appl. Linguist.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Making the Case for Audience Design in Conversational AI: Users’ Pragmatic Strategies and Rapport Expectations in Interaction with a Task-Oriented Chatbot
Applied Linguistics ( IF 3.6 ) Pub Date : 2024-05-08 , DOI: 10.1093/applin/amae033 Doris Dippold 1
Applied Linguistics ( IF 3.6 ) Pub Date : 2024-05-08 , DOI: 10.1093/applin/amae033 Doris Dippold 1
Affiliation
With chatbots becoming more and more prevalent in commercial and service contexts, they need to be designed to provide equitable access to services for all user groups. This paper argues that insights into users’ pragmatic strategies and rapport expectations can inform the audience design of chatbots and ensure that all users can equally benefit from the services they facilitate. The argument is underpinned by the analysis of simulated user interactions with a chatbot facilitating health appointment bookings, users’ introspective comments on their interactions, and users’ qualitative survey comments. The study shows that users’ pragmatic strategies show considerable variation. It also shows the negative impact of user experiences when the chatbot’s language and interaction patterns do not align with users’ rapport expectations. In closing, the paper uses these findings to define audience design for chatbots and discuss how audience design can be realized and supported by research.
中文翻译:
对话式人工智能中的受众设计案例:用户与面向任务的聊天机器人交互时的务实策略和融洽期望
随着聊天机器人在商业和服务环境中变得越来越普遍,它们的设计需要为所有用户组提供公平的服务访问权限。本文认为,深入了解用户的务实策略和融洽关系期望可以为聊天机器人的受众设计提供信息,并确保所有用户都能平等地从它们提供的服务中受益。这一论点的基础是对模拟用户与促进健康预约预约的聊天机器人交互的分析、用户对其交互的内省评论以及用户的定性调查评论。研究表明,用户的实用策略表现出相当大的差异。它还显示了当聊天机器人的语言和交互模式与用户的融洽关系期望不符时,用户体验的负面影响。最后,本文利用这些发现来定义聊天机器人的受众设计,并讨论如何通过研究来实现和支持受众设计。
更新日期:2024-05-08
中文翻译:
对话式人工智能中的受众设计案例:用户与面向任务的聊天机器人交互时的务实策略和融洽期望
随着聊天机器人在商业和服务环境中变得越来越普遍,它们的设计需要为所有用户组提供公平的服务访问权限。本文认为,深入了解用户的务实策略和融洽关系期望可以为聊天机器人的受众设计提供信息,并确保所有用户都能平等地从它们提供的服务中受益。这一论点的基础是对模拟用户与促进健康预约预约的聊天机器人交互的分析、用户对其交互的内省评论以及用户的定性调查评论。研究表明,用户的实用策略表现出相当大的差异。它还显示了当聊天机器人的语言和交互模式与用户的融洽关系期望不符时,用户体验的负面影响。最后,本文利用这些发现来定义聊天机器人的受众设计,并讨论如何通过研究来实现和支持受众设计。