当前位置:
X-MOL 学术
›
Adv. Water Resour.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lattice Boltzmann simulation of dissolution patterns in porous media: Single porosity versus dual porosity media
Advances in Water Resources ( IF 4.0 ) Pub Date : 2024-04-26 , DOI: 10.1016/j.advwatres.2024.104712 Elham Kashani , Ali Mohebbi , Amir Ehsan Feili Monfared , Enno T. de Vries , Amir Raoof
Advances in Water Resources ( IF 4.0 ) Pub Date : 2024-04-26 , DOI: 10.1016/j.advwatres.2024.104712 Elham Kashani , Ali Mohebbi , Amir Ehsan Feili Monfared , Enno T. de Vries , Amir Raoof
Understanding the influence of porous media structure, particularly dual porosity, on solvent transport and pore geometry evolution during chemical reactions is a complex and critical area of study. This research leverages the lattice Boltzmann method to investigate how the presence of aggregates in a medium affects solvent transport and pore space development, focusing on distinct dissolution regimes: face and wormhole dissolution. The study addresses the challenge of managing variable pore sizes in dual porosity media by developing specialized GPU algorithms, which efficiently handle fine grids and complex pore spaces. The findings reveal that dual porosity significantly enhances dissolution rates in both the face and wormhole dissolution regimes. Intriguingly, while the pattern of face dissolution remains largely unchanged, dual porosity markedly alters the pattern of wormhole dissolution. In dual-porosity media, the wormholes tend to be narrower and more elongated compared to the wider wormholes observed in single-porosity media. This variation is attributed to the reaction area dynamics, where the reduced reactive surface area along the main wormhole path in dual-porosity media results in less solvent engagement in the reaction processes. Moreover, the research provides insights into the microscale interactions in porous media, emphasizing how variations in microscale porosity can have substantial impacts on the overall dissolution dynamics. The study results are not only significant for understanding the fundamental aspects of chemical dissolution in porous media but also have practical implications in fields such as geo-energy and groundwater remediation. These findings help optimizing reaction processes in complex and heterogeneous porous systems, highlighting the need for detailed consideration of microstructural characteristics in modeling and industrial applications.
中文翻译:
多孔介质中溶解模式的格子玻尔兹曼模拟:单孔隙介质与双孔隙介质
了解多孔介质结构(特别是双孔隙率)对化学反应过程中溶剂传输和孔隙几何演化的影响是一个复杂且关键的研究领域。本研究利用格子玻尔兹曼方法来研究介质中聚集体的存在如何影响溶剂传输和孔隙空间发展,重点关注不同的溶解方式:面溶解和虫洞溶解。该研究通过开发专门的 GPU 算法来解决管理双孔隙介质中可变孔径的挑战,该算法可有效处理精细网格和复杂的孔隙空间。研究结果表明,双孔隙率显着提高了面和虫洞溶解状态下的溶解速率。有趣的是,虽然面溶解的模式基本上保持不变,但双孔隙显着改变了虫洞溶解的模式。与在单孔隙介质中观察到的较宽虫洞相比,在双孔隙介质中,虫洞往往更窄且更长。这种变化归因于反应区域动力学,其中双孔隙介质中沿主虫孔路径的反应表面积减少导致反应过程中溶剂参与较少。此外,该研究还深入了解了多孔介质中的微观相互作用,强调了微观孔隙率的变化如何对整体溶解动力学产生重大影响。该研究结果不仅对于理解多孔介质中化学溶解的基本方面具有重要意义,而且在地能和地下水修复等领域也具有实际意义。 这些发现有助于优化复杂和异质多孔系统中的反应过程,强调在建模和工业应用中详细考虑微观结构特征的必要性。
更新日期:2024-04-26
中文翻译:
多孔介质中溶解模式的格子玻尔兹曼模拟:单孔隙介质与双孔隙介质
了解多孔介质结构(特别是双孔隙率)对化学反应过程中溶剂传输和孔隙几何演化的影响是一个复杂且关键的研究领域。本研究利用格子玻尔兹曼方法来研究介质中聚集体的存在如何影响溶剂传输和孔隙空间发展,重点关注不同的溶解方式:面溶解和虫洞溶解。该研究通过开发专门的 GPU 算法来解决管理双孔隙介质中可变孔径的挑战,该算法可有效处理精细网格和复杂的孔隙空间。研究结果表明,双孔隙率显着提高了面和虫洞溶解状态下的溶解速率。有趣的是,虽然面溶解的模式基本上保持不变,但双孔隙显着改变了虫洞溶解的模式。与在单孔隙介质中观察到的较宽虫洞相比,在双孔隙介质中,虫洞往往更窄且更长。这种变化归因于反应区域动力学,其中双孔隙介质中沿主虫孔路径的反应表面积减少导致反应过程中溶剂参与较少。此外,该研究还深入了解了多孔介质中的微观相互作用,强调了微观孔隙率的变化如何对整体溶解动力学产生重大影响。该研究结果不仅对于理解多孔介质中化学溶解的基本方面具有重要意义,而且在地能和地下水修复等领域也具有实际意义。 这些发现有助于优化复杂和异质多孔系统中的反应过程,强调在建模和工业应用中详细考虑微观结构特征的必要性。