当前位置: X-MOL 学术Des. Codes Cryptogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computing gluing and splitting $$(\ell ,\ell )$$ -isogenies
Designs, Codes and Cryptography ( IF 1.4 ) Pub Date : 2024-05-02 , DOI: 10.1007/s10623-024-01413-x
Song Tian

We give algorithms to compute \((\ell ,\ell )\)-isogenies between Jacobians of genus 2 curves and products of elliptic curves in time of \({\tilde{O}}(\ell ^2)\) basic field operations, where \(\ell \) is an odd prime different from the characteristic of the field. The method relies on the notion of a normal Weil set of Weil functions due to Shepherd-Barron, and works for the case of computing \((\ell ,\ell )\)-isogenies between Jacobians of genus 2 curves.



中文翻译:

计算粘合和分裂 $$(\ell ,\ell )$$ -isogenies

我们给出算法来计算genus 2 曲线的雅可比行列式与椭圆曲线在\({\tilde{O}}(\ell ^2)\)时间的乘积之间的同构域运算,其中\(\ell \)是与域特征不同的奇素数。该方法依赖于 Shepherd-Barron 提出的正常 Weil 函数集的概念,适用于计算2 格曲线的雅可比行列式之间的\((\ell ,\ell )\)等基因的情况。

更新日期:2024-05-02
down
wechat
bug