当前位置: X-MOL 学术SIAM J. Numer. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Asymptotic Preserving Discontinuous Galerkin Method for a Linear Boltzmann Semiconductor Model
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-05-06 , DOI: 10.1137/22m1485784
Victor P. DeCaria 1 , Cory D. Hauck 2 , Stefan R. Schnake 1
Affiliation  

SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1067-1097, June 2024.
Abstract. A key property of the linear Boltzmann semiconductor model is that as the collision frequency tends to infinity, the phase space density [math] converges to an isotropic function [math], called the drift-diffusion limit, where [math] is a Maxwellian and the physical density [math] satisfies a second-order parabolic PDE known as the drift-diffusion equation. Numerical approximations that mirror this property are said to be asymptotic preserving. In this paper we build a discontinuous Galerkin method to the semiconductor model, and we show this scheme is both uniformly stable in [math], where 1/[math] is the scale of the collision frequency, and asymptotic preserving. In particular, we discuss what properties the discrete Maxwellian must satisfy in order for the schemes to converge in [math] to an accurate [math]-approximation of the drift-diffusion limit. Discrete versions of the drift-diffusion equation and error estimates in several norms with respect to [math] and the spacial resolution are also included.


中文翻译:

线性玻尔兹曼半导体模型的渐近保断间伽辽金法

SIAM 数值分析杂志,第 62 卷,第 3 期,第 1067-1097 页,2024 年 6 月
。摘要。线性玻尔兹曼半导体模型的一个关键特性是,当碰撞频率趋于无穷大时,相空间密度 [math] 收敛到各向同性函数 [math],称为漂移扩散极限,其中 [math] 是麦克斯韦函数,物理密度 [数学] 满足称为漂移扩散方程的二阶抛物线偏微分方程。反映这一性质的数值近似被认为是渐近保持的。在本文中,我们对半导体模型建立了一种不连续伽辽金方法,并证明该方案在[数学]上一致稳定,其中1/[数学]是碰撞频率的尺度,并且渐近保持。特别是,我们讨论了离散麦克斯韦必须满足哪些属性,以便方案在[数学]上收敛到漂移扩散极限的精确[数学]近似。还包括漂移扩散方程的离散版本以及关于[数学]和空间分辨率的几个规范的误差估计。
更新日期:2024-05-07
down
wechat
bug