当前位置:
X-MOL 学术
›
Bioeng. Transl. Med.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A stretchable, electroconductive tissue adhesive for the treatment of neural injury
Bioengineering & Translational Medicine ( IF 6.1 ) Pub Date : 2024-05-03 , DOI: 10.1002/btm2.10667 Jharana Dhal 1 , Mahsa Ghovvati 1, 2 , Avijit Baidya 1 , Ronak Afshari 1 , Curtis L. Cetrulo 3 , Reza Abdi 4 , Nasim Annabi 1, 5
Bioengineering & Translational Medicine ( IF 6.1 ) Pub Date : 2024-05-03 , DOI: 10.1002/btm2.10667 Jharana Dhal 1 , Mahsa Ghovvati 1, 2 , Avijit Baidya 1 , Ronak Afshari 1 , Curtis L. Cetrulo 3 , Reza Abdi 4 , Nasim Annabi 1, 5
Affiliation
Successful nerve repair using bioadhesive hydrogels demands minimizing tissue–material interfacial mechanical mismatch to reduce immune responses and scar tissue formation. Furthermore, it is crucial to maintain the bioelectrical stimulation‐mediated cell‐signaling mechanism to overcome communication barriers within injured nerve tissues. Therefore, engineering bioadhesives for neural tissue regeneration necessitates the integration of electroconductive properties with tissue‐like biomechanics. In this study, we propose a stretchable bioadhesive based on a custom‐designed chemically modified elastin‐like polypeptides (ELPs) and a choline‐based bioionic liquid (Bio‐IL), providing an electroconductive microenvironment to reconnect damaged nerve tissue. The stretchability akin to native neural tissue was achieved by incorporating hydrophobic ELP pockets, and a robust tissue adhesion was obtained due to multi‐mode tissue–material interactions through covalent and noncovalent bonding at the tissue interface. Adhesion tests revealed adhesive strength ~10 times higher than commercially available tissue adhesive, Evicel®. Furthermore, the engineered hydrogel supported in vitro viability and proliferation of human glial cells. We also evaluated the biodegradability and biocompatibility of the engineered bioadhesive in vivo using a rat subcutaneous implantation model, which demonstrated facile tissue infiltration and minimal immune response. The outlined functionalities empower the engineered elastic and electroconductive adhesive hydrogel to effectively enable sutureless surgical sealing of neural injuries and promote tissue regeneration.
中文翻译:
一种用于治疗神经损伤的可拉伸导电组织胶粘剂
使用生物粘附性水凝胶成功修复神经需要最大限度地减少组织-材料界面机械错配,以减少免疫反应和疤痕组织形成。此外,维持生物电刺激介导的细胞信号传导机制以克服受伤神经组织内的通信障碍至关重要。因此,用于神经组织再生的工程生物粘合剂需要将导电特性与组织样生物力学相结合。在这项研究中,我们提出了一种基于定制设计的化学修饰弹性蛋白样多肽 (ELP) 和基于胆碱的生物离子液体 (Bio-IL) 的可拉伸生物粘附剂,提供导电微环境以重新连接受损的神经组织。类似于天然神经组织的可拉伸性是通过结合疏水性 ELP 口袋实现的,并且由于多模式组织-材料相互作用,通过组织界面的共价键和非共价键合获得了强大的组织粘附。粘合测试显示,粘合强度比市售组织粘合剂 Evicel® 高 ~10 倍。此外,工程化水凝胶支持人神经胶质细胞的体外活力和增殖。我们还使用大鼠皮下植入模型评估了工程生物粘附剂在体内的生物降解性和生物相容性,该模型证明了简单的组织浸润和最小的免疫反应。概述的功能使工程弹性和导电粘合剂水凝胶能够有效地实现神经损伤的无缝合手术密封并促进组织再生。
更新日期:2024-05-03
中文翻译:
一种用于治疗神经损伤的可拉伸导电组织胶粘剂
使用生物粘附性水凝胶成功修复神经需要最大限度地减少组织-材料界面机械错配,以减少免疫反应和疤痕组织形成。此外,维持生物电刺激介导的细胞信号传导机制以克服受伤神经组织内的通信障碍至关重要。因此,用于神经组织再生的工程生物粘合剂需要将导电特性与组织样生物力学相结合。在这项研究中,我们提出了一种基于定制设计的化学修饰弹性蛋白样多肽 (ELP) 和基于胆碱的生物离子液体 (Bio-IL) 的可拉伸生物粘附剂,提供导电微环境以重新连接受损的神经组织。类似于天然神经组织的可拉伸性是通过结合疏水性 ELP 口袋实现的,并且由于多模式组织-材料相互作用,通过组织界面的共价键和非共价键合获得了强大的组织粘附。粘合测试显示,粘合强度比市售组织粘合剂 Evicel® 高 ~10 倍。此外,工程化水凝胶支持人神经胶质细胞的体外活力和增殖。我们还使用大鼠皮下植入模型评估了工程生物粘附剂在体内的生物降解性和生物相容性,该模型证明了简单的组织浸润和最小的免疫反应。概述的功能使工程弹性和导电粘合剂水凝胶能够有效地实现神经损伤的无缝合手术密封并促进组织再生。