当前位置:
X-MOL 学术
›
ACS ES&T Water
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biodegradation of Sulfonamide Antibiotics by Microalgae: Mechanistic Insights into Substituent-Induced Effects
ACS ES&T Water ( IF 4.8 ) Pub Date : 2024-05-03 , DOI: 10.1021/acsestwater.3c00761 Yuhao Chu 1 , Rupeng Wang 1 , Shengnan Li 1 , Xi Chen 1 , Nanqi Ren 1 , Shih-Hsin Ho 1
ACS ES&T Water ( IF 4.8 ) Pub Date : 2024-05-03 , DOI: 10.1021/acsestwater.3c00761 Yuhao Chu 1 , Rupeng Wang 1 , Shengnan Li 1 , Xi Chen 1 , Nanqi Ren 1 , Shih-Hsin Ho 1
Affiliation
Microalgae are a sustainable environmentally friendly wastewater treatment technology that has attracted much attention for use in the purification of antibiotic-containing wastewater. However, research into the mechanisms involved in microalgal antibiotic degradation is still in the initial stages, especially concerning the relationship between pollutant structure and removal rate. This study comprehensively analyzed the antibiotic biodegradation mechanisms in microalgae from a molecular structure perspective, examining four sulfonamide antibiotics (SAs) with different substituents as representative pollutants. Microalgae exhibited removal efficiencies of 86.15, 74.24, 60.14, and 46.60% for sulfathiazole, sulfamethazine, sulfadiazine, and sulfamethoxazole, respectively. It is noteworthy that cytochrome p450 (CYP450) played a central catalyzing role in their metabolism. Further analysis of molecular dynamics simulations and density functional theory calculations revealed that the geometric differences and electronic effect variations caused by the substituents significantly affected the catalytic activity of CYP450 as well as the overall reactivity of the SAs, resulting in different removal rates. Overall, SAs with high binding energy, low energy gap, and high electrophilicity indices were more readily catalyzed by CYP450 as evidenced by the degradation pathways. These results provide valuable insights at the molecular level into how different substituents affect the degradation rate of SAs in microalgae.
中文翻译:
微藻对磺酰胺抗生素的生物降解:取代基诱导效应的机理见解
微藻是一种可持续的环保废水处理技术,在净化含抗生素废水方面备受关注。然而,对微藻抗生素降解机制的研究仍处于起步阶段,特别是污染物结构与去除率之间的关系。本研究从分子结构的角度全面分析了微藻中抗生素的生物降解机制,以四种具有不同取代基的磺酰胺类抗生素(SA)作为代表性污染物。微藻对磺胺噻唑、磺胺二甲嗪、磺胺嘧啶和磺胺甲恶唑的去除效率分别为 86.15%、74.24%、60.14% 和 46.60%。值得注意的是,细胞色素 p450 (CYP450) 在其代谢中发挥着核心催化作用。分子动力学模拟和密度泛函理论计算的进一步分析表明,取代基引起的几何差异和电子效应变化显着影响CYP450的催化活性以及SA的整体反应活性,导致不同的去除率。总体而言,降解途径证明,具有高结合能、低能隙和高亲电指数的 SA 更容易被 CYP450 催化。这些结果在分子水平上为了解不同取代基如何影响微藻中 SA 的降解速率提供了有价值的见解。
更新日期:2024-05-03
中文翻译:
微藻对磺酰胺抗生素的生物降解:取代基诱导效应的机理见解
微藻是一种可持续的环保废水处理技术,在净化含抗生素废水方面备受关注。然而,对微藻抗生素降解机制的研究仍处于起步阶段,特别是污染物结构与去除率之间的关系。本研究从分子结构的角度全面分析了微藻中抗生素的生物降解机制,以四种具有不同取代基的磺酰胺类抗生素(SA)作为代表性污染物。微藻对磺胺噻唑、磺胺二甲嗪、磺胺嘧啶和磺胺甲恶唑的去除效率分别为 86.15%、74.24%、60.14% 和 46.60%。值得注意的是,细胞色素 p450 (CYP450) 在其代谢中发挥着核心催化作用。分子动力学模拟和密度泛函理论计算的进一步分析表明,取代基引起的几何差异和电子效应变化显着影响CYP450的催化活性以及SA的整体反应活性,导致不同的去除率。总体而言,降解途径证明,具有高结合能、低能隙和高亲电指数的 SA 更容易被 CYP450 催化。这些结果在分子水平上为了解不同取代基如何影响微藻中 SA 的降解速率提供了有价值的见解。