当前位置:
X-MOL 学术
›
SIAM J. Numer. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Gain Coefficients for Scrambled Halton Points
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-05-02 , DOI: 10.1137/23m1601882 Art B. Owen 1 , Zexin Pan 1
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-05-02 , DOI: 10.1137/23m1601882 Art B. Owen 1 , Zexin Pan 1
Affiliation
SIAM Journal on Numerical Analysis, Volume 62, Issue 3, Page 1021-1038, June 2024.
Abstract. Randomized quasi-Monte Carlo, via certain scramblings of digital nets, produces unbiased estimates of [math] with a variance that is [math] for any [math]. It also satisfies some nonasymptotic bounds where the variance is no larger than some [math] times the ordinary Monte Carlo variance. For scrambled Sobol’ points, this quantity [math] grows exponentially in [math]. For scrambled Faure points, [math] in any dimension, but those points are awkward to use for large [math]. This paper shows that certain scramblings of Halton sequences have gains below an explicit bound that is [math] but not [math] for any [math] as [math]. For [math], the upper bound on the gain coefficient is never larger than [math].
中文翻译:
加扰 Halton 点的增益系数
SIAM 数值分析杂志,第 62 卷,第 3 期,第 1021-1038 页,2024 年 6 月
。摘要。随机准蒙特卡罗,通过数字网络的某些扰乱,产生[数学]的无偏估计,对于任何[数学],其方差为[数学]。它还满足一些非渐近边界,其中方差不大于普通蒙特卡洛方差的某些[数学]倍。对于打乱的 Sobol' 点,这个数量 [math] 在 [math] 中呈指数增长。对于乱序的福尔点,任何维度的[数学],但这些点很难用于大型[数学]。本文表明,Halton 序列的某些置乱具有低于显式界限的增益,该界限是 [math],但对于任何 [math] 作为 [math] 而言不是 [math]。对于[math],增益系数的上限永远不会大于[math]。
更新日期:2024-05-03
Abstract. Randomized quasi-Monte Carlo, via certain scramblings of digital nets, produces unbiased estimates of [math] with a variance that is [math] for any [math]. It also satisfies some nonasymptotic bounds where the variance is no larger than some [math] times the ordinary Monte Carlo variance. For scrambled Sobol’ points, this quantity [math] grows exponentially in [math]. For scrambled Faure points, [math] in any dimension, but those points are awkward to use for large [math]. This paper shows that certain scramblings of Halton sequences have gains below an explicit bound that is [math] but not [math] for any [math] as [math]. For [math], the upper bound on the gain coefficient is never larger than [math].
中文翻译:
加扰 Halton 点的增益系数
SIAM 数值分析杂志,第 62 卷,第 3 期,第 1021-1038 页,2024 年 6 月
。摘要。随机准蒙特卡罗,通过数字网络的某些扰乱,产生[数学]的无偏估计,对于任何[数学],其方差为[数学]。它还满足一些非渐近边界,其中方差不大于普通蒙特卡洛方差的某些[数学]倍。对于打乱的 Sobol' 点,这个数量 [math] 在 [math] 中呈指数增长。对于乱序的福尔点,任何维度的[数学],但这些点很难用于大型[数学]。本文表明,Halton 序列的某些置乱具有低于显式界限的增益,该界限是 [math],但对于任何 [math] 作为 [math] 而言不是 [math]。对于[math],增益系数的上限永远不会大于[math]。