Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Discovery of modern living intertidal stromatolites on Sheybarah Island, Red Sea, Saudi Arabia
Geology ( IF 4.8 ) Pub Date : 2024-05-01 , DOI: 10.1130/g51793.1 Volker Vahrenkamp 1 , Viswasanthi Chandra 1 , Elisa Garuglieri 2 , Ramona Marasco 2 , Kai Hachmann 1 , Pankaj Khanna 3 , Daniele Daffonchio 2 , Alexander Petrovic 1, 4
Geology ( IF 4.8 ) Pub Date : 2024-05-01 , DOI: 10.1130/g51793.1 Volker Vahrenkamp 1 , Viswasanthi Chandra 1 , Elisa Garuglieri 2 , Ramona Marasco 2 , Kai Hachmann 1 , Pankaj Khanna 3 , Daniele Daffonchio 2 , Alexander Petrovic 1, 4
Affiliation
Microbial carbonates, and stromatolites in particular, represent the earliest geological record of life on Earth, which dominated the planet as the sole biotic carbonate factory for almost 3 b.y., from the Archean to the late Proterozoic. Rare and sparsely scattered across the globe in the present day, modern “living” stromatolites are typically relegated to extreme environmental niches, remaining as vestiges of a prodigious microbial past. Here, we report the first discovery of living shallow-marine stromatolites in the Middle East, on Sheybarah Island, Al Wajh carbonate platform, on the NE Red Sea shelf (Saudi Arabia). We detail their regional distribution and describe their environmental conditions, internal structures, and microbial diversity. We also report the first discovery of reticulated filaments in a photic setting, associated with these stromatolites. The Sheybarah stromatolites occur in the intertidal to shallow subtidal zones along the seaward-facing beach in three depth-dependent growth forms. Their inner layers were formed by microbially mediated accretion and differential lithification of sediment grains. Compositional microbial analysis revealed the presence of a wide range of microbial life forms.Stromatolites are a vestige of the first life on Earth, dominating carbonate-forming marine biota in the Archean and Proterozoic (Grotzinger and Knoll, 1999). Recent evidence dates the earliest occurrence of stromatolites to 3.48 Ga (Hickman-Lewis et al., 2023). With the exception of a few short intervals during the Phanerozoic, their importance in producing carbonates in modern times has been reduced to niche occurrences found predominantly in challenging environments, such as hypersaline marine settings and alkaline lakes (Carvalho et al., 2018; Samylina and Zaytseva, 2019; Marin-Carbonne et al., 2022). Understanding how lithified stromatolites form, which microbes contribute to growth processes, and how nutrient cycling works would provide insights into early life and ocean evolution on Earth, and perhaps on other planets, such as Mars. So far, the only occurrences of modern open-marine stromatolites are in the Exuma islands of the Bahamas (Dill et al., 1986; Visscher et al., 1998; Reid et al., 1995, 2000) and in Shark Bay, Australia (Suosaari et al., 2016, 2019). Here, we report the discovery of living stromatolites on Sheybarah Island, Red Sea, Saudi Arabia (Fig. 1). Although the presence of ancient microbialites (Perri et al., 2018; Strohmenger and Jameson, 2018) and microbial mats (Bontognali et al., 2010) has been previously recorded in the Middle East, this is the first record of modern intertidal stromatolites in this region.The newly discovered stromatolites are located on SW Sheybarah Island of the Al Wajh carbonate platform along the NW coast of Saudi Arabia (Figs. 1A and 1B). The land-attached Al Wajh platform is located in the NE Red Sea and is almost completely enclosed by a 115 km reef-shoal belt (Petrovic et al., 2022). The platform hosts a 42-m-deep lagoon that is characterized by 92 islands and patch reefs of varying size. Sheybarah Island, with an area of 27 km2 and a maximum elevation of 2 m above mean sea level, is situated on the SW edge of the platform (Fig. 1B). The southern slope of the platform is characterized by extensive mangrove forest mainly on the lagoon-facing rim, a sandy and rocky interior, carbonate beach sand ridges, skeletal carbonate sand, and rocky reef flats facing the open sea (Chalastani et al., 2020; Petrovic et al., 2023a). The semi-enclosed and oligotrophic Red Sea is characterized by poor water exchange and slow surface-water renewal (Maillard and Soliman, 1986). In the NE Red Sea, the average sea-surface temperature ranges between 28 °C in summer and 23 ± 1 °C during winter, while sea-surface salinities can reach up to 41‰. The prevailing wind direction is NNW with an average speed of 4 m s–1 (1980–2015; Dasari et al., 2018; Petrovic et al., 2023b), while during wintertime, strong SW winds occasionally occur (Fig. 1C; Raitsos et al., 2013). In addition, strong eastward-blowing zonal winds transport Fe-rich eolian sediments to the Red Sea realm, alternating with westward-blowing zonal winds during summer (Jiang et al., 2009).The first fieldwork that led to the discovery of the stromatolite field was conducted using a small local fishing boat during a scouting visit to Sheybarah Island in January 2021. Detailed descriptions of field visits and sampling and data acquisition methodologies are presented in Items S1–S3 in the Supplemental Material1. Field data acquisition methods included in situ temperature and salinity logging, a manual field survey, and drone surveys (see Item S1A). Laboratory analysis included X-ray micro–computed tomography (μCT), optical microscopy of thin sections, scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and 14C dating. Preliminary investigation of bacterial community composition was also performed using 16S rRNA gene metabarcoding followed by Illumina sequencing.The Sheybarah stromatolite field is in the intertidal to shallow subtidal zone on a gently seaward-dipping fossil reef flat. The age of the underlying coral pavement is mid-Holocene based on 14C age dating of a coral from a shallow core drilled into the reef flat (5264 yr B.P.). This age period relates to the +2 m Holocene sea-level highstand 8000–4000 yr ago reported by Khanna et al. (2021). Eroded domal coral heads suggest that wave energy has lowered the former reef flat to the current sea level. Lithified sands underneath the stromatolites have been dated with 14C as 1640 yr B.P., while the laminations in the stromatolites date between 325 and 120 yr B.P. (see Supplemental Material for all age data). This indicates an onset of stromatolite growth some 300–400 yr ago, or more recently if grains eroded from the mid-Holocene reef flat have been included into the stromatolite fabric. The daily tidal range is 50–60 cm, reaching a maximum of 1 m. Rare flood surges can inundate lower-lying parts of the island. Sea-surface water temperatures over a year's cycle measured nearby at a water depth of 5 m vary between 21 °C and 31 °C. However, in the intertidal zone, seasonal and daily temperature ranges are more extreme, varying from 8 °C to >48 °C, and reflecting the daily changes caused by seawater inundation and exposure and winter-night/summer-day air temperatures. The average values of salinity, pH, and dissolved oxygen measured during high tide (March 2021) were 42 ppt, 7.8 ± 0.1, and 5.9 ± 0.5 mg/L, respectively. The environmental conditions of the Red Sea are still considered normal, even though salinity is elevated due to the water-circulation patterns and the lack of precipitation.The Sheybarah stromatolites are distributed over an area exceeding 5 ha (Figs. 1C and 2A). We distinguished stromatolites in the upper intertidal zone adjacent to the beach covering ~3000 m2 and in the mid-intertidal to shallow subtidal zones (Fig. 2A). There are three main growth forms (Fig. 2A): Type 1—Light gray-green to dark brown, elongated-sinusoidal to rhomboidal structures aligned perpendicular to wave crests, with a height of <15 cm, length of 10–100 cm, and width of 5–50 cm, are found in the upper intertidal zone, often coalescing to larger elongated clusters up to 10 m in length (Fig. 2B). They are pustular on the outside and moderately well lithified (Fig. 2C). Type 2—The mid- to lower intertidal zones are composed of low-relief (height <5 cm), irregularly shaped, ovoid to tabular clusters up to 100 m2 in area, and these are often anchored by a slightly elevated core of an eroded late Holocene coral (Figs. 2D–2E). Type 3—Poorly lithified, low-relief, irregularly shaped stromatolites occur in the lower intertidal to shallow subtidal zones, commonly covered by a thin coat of white carbonate sand (Figs. 2F–2G).Herein, we describe the inner structures of type 1 stromatolites (Fig. 3; Fig. S1.2). Cross-section cuts of hand samples and μCT analysis of type 1 stromatolites revealed moderately well-laminated, undulating sediment layers interrupted by vugs and clotted fabrics, suggesting that they are thrombolitic stromatolites sensu Riding (2011) (Figs. 3A and 3B; Item S2.1). Dense lithified layers stand out in relief in cut and washed cross sections and are characterized by high CT density values. Grazing and encrusting borers such as gastropods were often encased during the accretion and lithification of the stromatolite layers (Fig. S2.2). Millimeter-scale laminations are clearly visible in thin-section micrographs and are composed of micritic crusts sandwiched by 1–2-mm-thick sediment accretion layers (Figs. 3C–3D). The sediment grains were micritized to the extent of complete obliteration of the original grain fabric. Layers of fused grains with indistinguishable grain boundaries are common, often underlying micritic crusts (Figs. 3D–3E). The fused grain layers are often infested by microborings, particularly near the rims of the grains, suggesting ongoing micritization even after sediment accretion (Fig. 3E). Elongated acicular aragonite needle rim cements typically <10 μm long are abundant, either occurring as single rods or in meshes perpendicular to grain surfaces (Fig. 3F). The mineral components of the stromatolite layers are aragonite (85%), high-magnesian calcite (9%), and low-magnesian calcite (5%), with minor quantities of quartz and clay minerals (Fig. S2.3).Filamentous cyanobacteria represent the most abundant bacterial structures as observed through the SEM technique (Figs. 4A–4D). They envelop the sediment grains as single strings or bunches covered by mucous sheaths and biological matrixes consistent with extracellular polymeric substance (EPS) (Figs. 4A–4D; Westall et al., 2000; Dohnalkova et al., 2011). Sub-micron-size equant Ca-Mg–carbonate crystals are abundantly present on the cyanobacterial filaments and EPS (Fig. 4B). Besides filamentous cyanobacteria, other microbial features can be observed, including copious amounts of biofilm-like structures comprising bacterial cells and matrixes compatible with EPS (Fig. 4C), Navicula-like diatoms (Fig. 4D), and Chroococcus-like structures. Among the most remarkable microbial features are reticulated filaments (Melim et al., 2015), which are ubiquitous in the upper and lower surfaces of the topmost microbial mat layers (Fig. 4E). At the phylum level, the bacterial communities inhabiting the stromatolite structures are dominated by Proteobacteria (49%), with Alphaproteobacteria (30%), Gammaproteobacteria (12%), and Deltaproteobacteria (7%) as dominant classes, Cyanobacteria (16%), and Bacteroidetes (11%) (Fig. 4F).The occurrence of a living stromatolite field under open-marine conditions on Sheybarah Island, NE Red Sea, is likely driven by environmental factors. The dominantly intertidal position of the stromatolites exposes them not only to regular wetting and drying conditions, but also to an extreme temperature range between 8 °C and >48 °C. Currents in the shallow intertidal environment of SW Sheybarah Island are light and remain limited to high tides or occasional storm events. Considering that similar environmental conditions prevail in other islands of the Al Wajh carbonate platform, we predict that other stromatolite fields may occur in the region. The overall intertidal to shallow subtidal setting and the oligotrophic conditions are analogous to the microtidal setting in the Bahamas. However, the height of the Sheybarah stromatolites is limited up to 15 cm, potentially due to lower accommodation space attributed to the microtidal conditions. Their lateral extent appears to be limited by competition with red algae and corals, which dominate the backreef subtidal environment.The growth of Sheybarah stromatolites is primarily attributed to microbially mediated accretion and differential lithification of sediment grains. The diverse range of sediment-microbial microtextural features observed in the Sheybarah stromatolites indicates cycles of grain entrapment by filamentous microbial structures and fused grains, and cementation similar to the intertidal stromatolites in the Bahamas (Reid and Browne, 1991; Browne, 2011; Dupraz et al., 2013; Frantz et al., 2015). Consistently, relative abundances of bacterial operational taxonomic units composing the microbial communities of Sheybarah stromatolites include a combination of photoautotrophic (Cyanobacteria, 16%) and heterotrophic (e.g., taxa capable of sulfate reduction, including Gammaproteobacteria [12%], Desulfobacteriota [0.8%], and Campylobacteriota [0.02%]; Madigan et al., 2014; Florentino et al., 2016) taxa, which can promote different metabolic processes, contributing to the stromatolite formation.An intriguing aspect of the Sheybarah stromatolites is the presence of reticulated filaments (Fig. 4E), which have so far only been reported from aphotic environments in caves (Melim et al., 2015). In the Sheybarah stromatolites, these enigmatic features are ubiquitously present in the surface microbial mat and are characterized by variable morphologies, including horizontal ridges supported by vertical columnar structures (Fig. 4E). Their biogeochemical nature and their role in the formation and morphological structure of these stromatolites are unclear and will be subjects of ongoing research.To the best of our knowledge, the discovery of the Sheybarah stromatolites is the first of its kind in the Middle East, presenting an unprecedented opportunity to study their geobiology in this unique geographic region. Modern open shallow-marine stromatolites are sparsely present on the planet, leading to a lack of suitable analogues for their ancient counterparts. The only previously known modern analogue to the open shallow-marine settings, where most Proterozoic stromatolites developed, has so far been recorded in the Bahamian Archipelago (Dill et al., 1986; Reid and Browne, 1991; Reid et al., 1995, 2000). The discovery of the Sheybarah stromatolite field holds important implications, not only in the scientific perspective, but also in terms of ecosystem services and environmental heritage awareness in line with the ongoing projects for sustainability and ecotourism development promoted by Saudi Arabia. The site is currently under consideration for being a dedicated conservation zone.We acknowledge funding from King Abdullah University of Science and Technology (KAUST) baseline supports to V. Vahrenkamp and D. Daffonchio. We thank Red Sea Global for their support in accessing the field locations. We thank L. Melim and H. Westphal for fruitful discussions regarding reticulated filaments. We thank the reviewers for their constructive comments and feedback to improve the manuscript.
中文翻译:
在沙特阿拉伯红海谢巴拉岛发现现代活潮间叠层石
微生物碳酸盐,特别是叠层石,代表了地球上生命最早的地质记录,从太古代到晚元古代,它作为唯一的生物碳酸盐工厂在地球上占据了近3年的统治地位。如今,现代“活的”叠层石在全球范围内稀有且稀疏,通常被归入极端的环境生态位,成为过去巨大的微生物的遗迹。在这里,我们报告了在中东红海陆架东北部(沙特阿拉伯)Al Wajh 碳酸盐台地 Sheybarah 岛首次发现活的浅海叠层石。我们详细介绍了它们的区域分布,并描述了它们的环境条件、内部结构和微生物多样性。我们还报告了在光环境中首次发现与这些叠层石相关的网状丝。 Sheybarah 叠层石以三种与深度相关的生长形式出现在面向大海的海滩的潮间带至浅潮下带中。它们的内层是由微生物介导的增生和沉积物颗粒的差异岩化形成的。微生物组成分析揭示了多种微生物生命形式的存在。叠层石是地球上第一个生命的遗迹,在太古代和元古代形成碳酸盐的海洋生物群中占主导地位(Grotzinger 和 Knoll,1999)。最近的证据表明叠层石的最早出现时间为 3.48 Ga(Hickman-Lewis 等人,2023 年)。除了显生宙期间的几个短暂间隔外,它们在现代碳酸盐生产中的重要性已降低到主要在具有挑战性的环境中发现的生态位,例如高盐度海洋环境和碱性湖泊(Carvalho 等人,2018 年;Samylina 和Zaytseva,2019;Marin-Carbonne 等人,2022)。了解石化叠层石是如何形成的、哪些微生物有助于生长过程以及养分循环如何工作,将为了解地球上以及其他行星(例如火星)上的早期生命和海洋演化提供见解。迄今为止,现代露天海洋叠层石唯一出现在巴哈马的埃克苏马群岛(Dill et al., 1986; Visscher et al., 1998; Reid et al., 1995, 2000)和澳大利亚鲨鱼湾(Suosaari 等人,2016,2019)。在此,我们报告了在沙特阿拉伯红海谢巴拉岛发现的活叠层石(图 1)。尽管中东地区此前曾记录过古代微生物岩(Perri et al., 2018;Strohmenger and Jameson, 2018)和微生物垫(Bontognali et al., 2010)的存在,但这是现代潮间叠层石的首次记录。新发现的叠层石位于沙特阿拉伯西北海岸Al Wajh碳酸盐台地西南Sheybarah岛(图1A和1B)。与陆地相连的 Al Wajh 平台位于红海东北部,几乎完全被 115 公里长的礁滩带包围(Petrovic 等人,2022)。该平台拥有一个 42 米深的泻湖,有 92 个岛屿和大小不一的斑礁。 Sheybarah 岛位于台地西南边缘,面积 27 km2,最高海拔 2 m(图 1B)。平台南坡的特点是广泛的红树林,主要分布在面向泻湖的边缘,沙质和岩石内部,碳酸盐海滩沙脊,骨架碳酸盐砂和面向公海的岩石礁滩(Chalastani等人,2020)彼得罗维奇等人,2023a)。半封闭和贫营养的红海的特点是水交换差和地表水更新缓慢(Maillard 和 Soliman,1986)。在红海东北部,海面平均温度夏季为28℃,冬季为23±1℃,海面盐度可达41‰。盛行风向为 NNW,平均风速 4 ms–1(1980–2015;Dasari et al., 2018;Petrovic et al., 2023b),冬季偶有强西南风(图 1C;Raitsos)等人,2013)。此外,强烈的向东吹的纬向风将富含铁的风积沉积物输送到红海领域,夏季期间与向西吹的纬向风交替(Jiang et al., 2009)。导致叠层石发现的第一次实地考察实地考察是在 2021 年 1 月对 Sheybarah 岛进行侦察访问期间使用当地一艘小型渔船进行的。补充材料 1 中的 S1-S3 项介绍了实地考察以及采样和数据采集方法的详细描述。现场数据采集方法包括原位温度和盐度记录、手动现场调查和无人机调查(参见项目 S1A)。实验室分析包括 X 射线微计算机断层扫描 (μCT)、薄片光学显微镜、扫描电子显微镜 (SEM)、粉末 X 射线衍射 (XRD) 和 14C 测年。还使用 16S rRNA 基因元条形码编码和 Illumina 测序对细菌群落组成进行了初步调查。Sheybarah 叠层石场位于潮间带至浅潮下带,位于轻轻向海倾斜的化石礁滩上。根据钻入礁滩的浅层岩心(距今 5264 年)的珊瑚 14C 年龄测定,底层珊瑚铺面的年龄为全新世中期。这个年龄阶段与 Khanna 等人报道的 8000-4000 年前+2 m 全新世海平面高位有关。 (2021)。被侵蚀的圆顶珊瑚头表明,波浪能已将以前的礁滩降低到了当前的海平面。叠层石下方的石化砂经 14C 测年为距今 1640 年,而叠层石中的岩层则可追溯到距今 325 至 120 年之间(有关所有年龄数据,请参阅补充材料)。这表明叠层石在大约 300-400 年前开始生长,或者如果从全新世中期礁滩侵蚀的颗粒已包含在叠层石结构中,则表明叠层石生长的时间更晚。每日潮差50-60厘米,最大达到1m。罕见的洪水潮可能会淹没该岛的低洼地区。在水深 5 m 附近测得的一年周期海面水温在 21 °C 至 31 °C 之间变化。然而,在潮间带,季节和每日温度范围更为极端,从 8 °C 到 >48 °C 不等,反映了海水淹没和暴露以及冬夜/夏季白天气温引起的每日变化。涨潮期间(2021 年 3 月)测得的盐度、pH 和溶解氧的平均值分别为 42 ppt、7.8 ± 0.1 和 5.9 ± 0.5 mg/L。尽管由于水循环模式和缺乏降水导致盐度升高,但红海的环境条件仍然被认为是正常的。Sheybarah叠层石的分布面积超过5公顷(图1C和2A)。我们区分了覆盖约3000平方米的海滩附近的上层潮间带和中潮间带至浅潮下带的叠层石(图2A)。主要有三种生长形式(图2A): 类型1——浅灰绿色至深棕色,细长的正弦至菱形结构,垂直于波峰排列,高度<15厘米,长度10-100厘米,宽度为 5-50 cm,发现于潮间带上部,通常合并成较大的细长簇,长度可达 10 m(图 2B)。它们的外部呈脓疱状,并且石化程度中等(图 2C)。类型 2 — 中下潮间带由低起伏(高度 <5 厘米)、不规则形状、卵圆形到板状簇组成,面积达 100 平方米,并且这些潮间带通常由稍微升高的侵蚀核心固定。全新世晚期珊瑚(图2D-2E)。类型3——岩化程度低、地势低、形状不规则的叠层石出现在潮间带下部至潮下带浅层,通常被一层薄薄的白色碳酸盐砂覆盖(图2F-2G)。在此,我们描述该类型的内部结构1叠层石(图3;图S1.2)。手部样本的横截面切割和 1 型叠层石的 μCT 分析显示,层压良好、起伏的沉积层被孔洞和凝结的织物打断,表明它们是血栓叠层石 Riding (2011)(图 3A 和 3B;项目 S2) .1).致密的岩化层在切割和清洗的横截面中以浮雕形式突出,并具有高 CT 密度值的特征。在叠层石层的增生和石化过程中,腹足动物等食虫和结壳蛀虫经常被包裹(图S2.2)。毫米级的层状结构在薄片显微照片中清晰可见,由泥晶结壳夹着 1-2 毫米厚的沉积物增生层组成(图 3C-3D)。沉积物颗粒被微晶化到原始颗粒结构完全消失的程度。晶界难以区分的熔凝晶粒层很常见,通常位于泥晶结壳下方(图 3D-3E)。熔融颗粒层经常受到微孔的侵扰,特别是在颗粒边缘附近,这表明即使在沉积物增生之后,微晶化仍在继续(图3E)。细长的针状文石针状边缘水泥通常<10μm长,非常丰富,要么以单棒的形式出现,要么以垂直于颗粒表面的网格形式出现(图3F)。叠层石层矿物成分为霰石(85%)、高镁方解石(9%)、低镁方解石(5%),还有少量石英和粘土矿物(图S2.3)。通过 SEM 技术观察到,蓝细菌代表了最丰富的细菌结构(图 4A-4D)。它们将沉积物颗粒包裹成单串或串,被粘液鞘和与细胞外聚合物(EPS)一致的生物基质覆盖(图4A-4D;Westall等人,2000;Dohnalkova等人,2011)。亚微米尺寸等量的 Ca-Mg-碳酸盐晶体大量存在于蓝藻丝和 EPS 上(图 4B)。除了丝状蓝细菌外,还可以观察到其他微生物特征,包括大量由细菌细胞和与 EPS 相容的基质组成的生物膜样结构(图 4C)、舟形硅藻(图 4D)和铬球菌样结构。最显着的微生物特征是网状丝(Melim et al., 2015),它们普遍存在于最顶层微生物垫层的上表面和下表面(图4E)。在门水平上,叠层石结构中的细菌群落以变形菌门(49%)为主,其中α变形菌门(30%)、γ变形菌门(12%)和δ变形菌门(7%)为优势类,蓝藻菌门(16%)、和拟杆菌 (11%) (图 4F)。红海东北部 Sheybarah 岛开放海洋条件下存在活叠层石场,可能是由环境因素驱动的。叠层石主要位于潮间带位置,不仅使其暴露在常规的湿润和干燥条件下,而且还暴露在 8 °C 至 >48 °C 的极端温度范围内。谢巴拉岛西南浅层潮间带环境中的海流较小,并且仅限于涨潮或偶尔发生风暴事件。考虑到 Al Wajh 碳酸盐台地其他岛屿也存在类似的环境条件,我们预测该地区可能存在其他叠层石田。整体潮间带至浅潮下带环境和贫营养条件类似于巴哈马的微潮环境。然而,Sheybarah 叠层石的高度仅限于 15 厘米,这可能是由于微潮条件导致的可容纳空间较低。它们的横向范围似乎受到与红藻和珊瑚的竞争的限制,红藻和珊瑚在后礁潮下环境中占主导地位。Sheybarah 叠层石的生长主要归因于微生物介导的增生和沉积物颗粒的差异岩化。在 Sheybarah 叠层石中观察到的各种沉积物-微生物微观结构特征表明,与巴哈马潮间带叠层石类似,丝状微生物结构和融合颗粒对颗粒的捕获和胶结的循环(Reid 和 Browne,1991 年;Browne,2011 年;Dupraz 等人)等人,2013;弗朗茨等人,2015)。一致地,构成谢巴拉叠层石微生物群落的细菌操作分类单位的相对丰度包括光合自养(蓝细菌,16%)和异养(例如,能够还原硫酸盐的分类单元,包括Gammaproteobacteria [12%],Desulfobacteriota [0.8%]的组合。和 Campylobacteriota [0.02%];Madigan et al., 2014;Florentino et al., 2016) 分类群,可以促进不同的代谢过程,有助于叠层石的形成。Sheybarah 叠层石的一个有趣的方面是网状丝的存在(图4E),迄今为止仅在洞穴的无光环境中报道过这种现象(Melim et al., 2015)。在 Sheybarah 叠层石中,这些神秘特征普遍存在于表面微生物垫中,并以可变的形态为特征,包括由垂直柱状结构支撑的水平脊(图 4E)。它们的生物地球化学性质以及它们在这些叠层石的形成和形态结构中的作用尚不清楚,并将成为持续研究的主题。 据我们所知,谢巴拉叠层石的发现是中东此类叠层石的首次发现,在这个独特的地理区域研究其地球生物学的前所未有的机会。现代开放的浅海叠层石在地球上很少存在,导致缺乏合适的古代叠层石类似物。迄今为止,唯一已知的与开阔的浅海环境相似的现代环境,大多数元古代叠层石都是在巴哈马群岛发育的(Dill 等人,1986 年;Reid 和 Browne,1991 年;Reid 等人,1995 年)。 2000)。 Sheybarah叠层石田的发现不仅在科学角度上具有重要意义,而且在生态系统服务和环境遗产意识方面也具有重要意义,这与沙特阿拉伯正在推动的可持续发展和生态旅游发展项目相一致。该地点目前正在考虑成为专门的保护区。我们感谢阿卜杜拉国王科技大学 (KAUST) 为 V. Vahrenkamp 和 D. Daffonchio 提供的基线支持。我们感谢 Red Sea Global 在进入现场地点方面提供的支持。我们感谢 L. Melim 和 H. Westphal 关于网状丝的富有成效的讨论。我们感谢审稿人为改进手稿而提出的建设性意见和反馈。
更新日期:2024-05-02
中文翻译:
在沙特阿拉伯红海谢巴拉岛发现现代活潮间叠层石
微生物碳酸盐,特别是叠层石,代表了地球上生命最早的地质记录,从太古代到晚元古代,它作为唯一的生物碳酸盐工厂在地球上占据了近3年的统治地位。如今,现代“活的”叠层石在全球范围内稀有且稀疏,通常被归入极端的环境生态位,成为过去巨大的微生物的遗迹。在这里,我们报告了在中东红海陆架东北部(沙特阿拉伯)Al Wajh 碳酸盐台地 Sheybarah 岛首次发现活的浅海叠层石。我们详细介绍了它们的区域分布,并描述了它们的环境条件、内部结构和微生物多样性。我们还报告了在光环境中首次发现与这些叠层石相关的网状丝。 Sheybarah 叠层石以三种与深度相关的生长形式出现在面向大海的海滩的潮间带至浅潮下带中。它们的内层是由微生物介导的增生和沉积物颗粒的差异岩化形成的。微生物组成分析揭示了多种微生物生命形式的存在。叠层石是地球上第一个生命的遗迹,在太古代和元古代形成碳酸盐的海洋生物群中占主导地位(Grotzinger 和 Knoll,1999)。最近的证据表明叠层石的最早出现时间为 3.48 Ga(Hickman-Lewis 等人,2023 年)。除了显生宙期间的几个短暂间隔外,它们在现代碳酸盐生产中的重要性已降低到主要在具有挑战性的环境中发现的生态位,例如高盐度海洋环境和碱性湖泊(Carvalho 等人,2018 年;Samylina 和Zaytseva,2019;Marin-Carbonne 等人,2022)。了解石化叠层石是如何形成的、哪些微生物有助于生长过程以及养分循环如何工作,将为了解地球上以及其他行星(例如火星)上的早期生命和海洋演化提供见解。迄今为止,现代露天海洋叠层石唯一出现在巴哈马的埃克苏马群岛(Dill et al., 1986; Visscher et al., 1998; Reid et al., 1995, 2000)和澳大利亚鲨鱼湾(Suosaari 等人,2016,2019)。在此,我们报告了在沙特阿拉伯红海谢巴拉岛发现的活叠层石(图 1)。尽管中东地区此前曾记录过古代微生物岩(Perri et al., 2018;Strohmenger and Jameson, 2018)和微生物垫(Bontognali et al., 2010)的存在,但这是现代潮间叠层石的首次记录。新发现的叠层石位于沙特阿拉伯西北海岸Al Wajh碳酸盐台地西南Sheybarah岛(图1A和1B)。与陆地相连的 Al Wajh 平台位于红海东北部,几乎完全被 115 公里长的礁滩带包围(Petrovic 等人,2022)。该平台拥有一个 42 米深的泻湖,有 92 个岛屿和大小不一的斑礁。 Sheybarah 岛位于台地西南边缘,面积 27 km2,最高海拔 2 m(图 1B)。平台南坡的特点是广泛的红树林,主要分布在面向泻湖的边缘,沙质和岩石内部,碳酸盐海滩沙脊,骨架碳酸盐砂和面向公海的岩石礁滩(Chalastani等人,2020)彼得罗维奇等人,2023a)。半封闭和贫营养的红海的特点是水交换差和地表水更新缓慢(Maillard 和 Soliman,1986)。在红海东北部,海面平均温度夏季为28℃,冬季为23±1℃,海面盐度可达41‰。盛行风向为 NNW,平均风速 4 ms–1(1980–2015;Dasari et al., 2018;Petrovic et al., 2023b),冬季偶有强西南风(图 1C;Raitsos)等人,2013)。此外,强烈的向东吹的纬向风将富含铁的风积沉积物输送到红海领域,夏季期间与向西吹的纬向风交替(Jiang et al., 2009)。导致叠层石发现的第一次实地考察实地考察是在 2021 年 1 月对 Sheybarah 岛进行侦察访问期间使用当地一艘小型渔船进行的。补充材料 1 中的 S1-S3 项介绍了实地考察以及采样和数据采集方法的详细描述。现场数据采集方法包括原位温度和盐度记录、手动现场调查和无人机调查(参见项目 S1A)。实验室分析包括 X 射线微计算机断层扫描 (μCT)、薄片光学显微镜、扫描电子显微镜 (SEM)、粉末 X 射线衍射 (XRD) 和 14C 测年。还使用 16S rRNA 基因元条形码编码和 Illumina 测序对细菌群落组成进行了初步调查。Sheybarah 叠层石场位于潮间带至浅潮下带,位于轻轻向海倾斜的化石礁滩上。根据钻入礁滩的浅层岩心(距今 5264 年)的珊瑚 14C 年龄测定,底层珊瑚铺面的年龄为全新世中期。这个年龄阶段与 Khanna 等人报道的 8000-4000 年前+2 m 全新世海平面高位有关。 (2021)。被侵蚀的圆顶珊瑚头表明,波浪能已将以前的礁滩降低到了当前的海平面。叠层石下方的石化砂经 14C 测年为距今 1640 年,而叠层石中的岩层则可追溯到距今 325 至 120 年之间(有关所有年龄数据,请参阅补充材料)。这表明叠层石在大约 300-400 年前开始生长,或者如果从全新世中期礁滩侵蚀的颗粒已包含在叠层石结构中,则表明叠层石生长的时间更晚。每日潮差50-60厘米,最大达到1m。罕见的洪水潮可能会淹没该岛的低洼地区。在水深 5 m 附近测得的一年周期海面水温在 21 °C 至 31 °C 之间变化。然而,在潮间带,季节和每日温度范围更为极端,从 8 °C 到 >48 °C 不等,反映了海水淹没和暴露以及冬夜/夏季白天气温引起的每日变化。涨潮期间(2021 年 3 月)测得的盐度、pH 和溶解氧的平均值分别为 42 ppt、7.8 ± 0.1 和 5.9 ± 0.5 mg/L。尽管由于水循环模式和缺乏降水导致盐度升高,但红海的环境条件仍然被认为是正常的。Sheybarah叠层石的分布面积超过5公顷(图1C和2A)。我们区分了覆盖约3000平方米的海滩附近的上层潮间带和中潮间带至浅潮下带的叠层石(图2A)。主要有三种生长形式(图2A): 类型1——浅灰绿色至深棕色,细长的正弦至菱形结构,垂直于波峰排列,高度<15厘米,长度10-100厘米,宽度为 5-50 cm,发现于潮间带上部,通常合并成较大的细长簇,长度可达 10 m(图 2B)。它们的外部呈脓疱状,并且石化程度中等(图 2C)。类型 2 — 中下潮间带由低起伏(高度 <5 厘米)、不规则形状、卵圆形到板状簇组成,面积达 100 平方米,并且这些潮间带通常由稍微升高的侵蚀核心固定。全新世晚期珊瑚(图2D-2E)。类型3——岩化程度低、地势低、形状不规则的叠层石出现在潮间带下部至潮下带浅层,通常被一层薄薄的白色碳酸盐砂覆盖(图2F-2G)。在此,我们描述该类型的内部结构1叠层石(图3;图S1.2)。手部样本的横截面切割和 1 型叠层石的 μCT 分析显示,层压良好、起伏的沉积层被孔洞和凝结的织物打断,表明它们是血栓叠层石 Riding (2011)(图 3A 和 3B;项目 S2) .1).致密的岩化层在切割和清洗的横截面中以浮雕形式突出,并具有高 CT 密度值的特征。在叠层石层的增生和石化过程中,腹足动物等食虫和结壳蛀虫经常被包裹(图S2.2)。毫米级的层状结构在薄片显微照片中清晰可见,由泥晶结壳夹着 1-2 毫米厚的沉积物增生层组成(图 3C-3D)。沉积物颗粒被微晶化到原始颗粒结构完全消失的程度。晶界难以区分的熔凝晶粒层很常见,通常位于泥晶结壳下方(图 3D-3E)。熔融颗粒层经常受到微孔的侵扰,特别是在颗粒边缘附近,这表明即使在沉积物增生之后,微晶化仍在继续(图3E)。细长的针状文石针状边缘水泥通常<10μm长,非常丰富,要么以单棒的形式出现,要么以垂直于颗粒表面的网格形式出现(图3F)。叠层石层矿物成分为霰石(85%)、高镁方解石(9%)、低镁方解石(5%),还有少量石英和粘土矿物(图S2.3)。通过 SEM 技术观察到,蓝细菌代表了最丰富的细菌结构(图 4A-4D)。它们将沉积物颗粒包裹成单串或串,被粘液鞘和与细胞外聚合物(EPS)一致的生物基质覆盖(图4A-4D;Westall等人,2000;Dohnalkova等人,2011)。亚微米尺寸等量的 Ca-Mg-碳酸盐晶体大量存在于蓝藻丝和 EPS 上(图 4B)。除了丝状蓝细菌外,还可以观察到其他微生物特征,包括大量由细菌细胞和与 EPS 相容的基质组成的生物膜样结构(图 4C)、舟形硅藻(图 4D)和铬球菌样结构。最显着的微生物特征是网状丝(Melim et al., 2015),它们普遍存在于最顶层微生物垫层的上表面和下表面(图4E)。在门水平上,叠层石结构中的细菌群落以变形菌门(49%)为主,其中α变形菌门(30%)、γ变形菌门(12%)和δ变形菌门(7%)为优势类,蓝藻菌门(16%)、和拟杆菌 (11%) (图 4F)。红海东北部 Sheybarah 岛开放海洋条件下存在活叠层石场,可能是由环境因素驱动的。叠层石主要位于潮间带位置,不仅使其暴露在常规的湿润和干燥条件下,而且还暴露在 8 °C 至 >48 °C 的极端温度范围内。谢巴拉岛西南浅层潮间带环境中的海流较小,并且仅限于涨潮或偶尔发生风暴事件。考虑到 Al Wajh 碳酸盐台地其他岛屿也存在类似的环境条件,我们预测该地区可能存在其他叠层石田。整体潮间带至浅潮下带环境和贫营养条件类似于巴哈马的微潮环境。然而,Sheybarah 叠层石的高度仅限于 15 厘米,这可能是由于微潮条件导致的可容纳空间较低。它们的横向范围似乎受到与红藻和珊瑚的竞争的限制,红藻和珊瑚在后礁潮下环境中占主导地位。Sheybarah 叠层石的生长主要归因于微生物介导的增生和沉积物颗粒的差异岩化。在 Sheybarah 叠层石中观察到的各种沉积物-微生物微观结构特征表明,与巴哈马潮间带叠层石类似,丝状微生物结构和融合颗粒对颗粒的捕获和胶结的循环(Reid 和 Browne,1991 年;Browne,2011 年;Dupraz 等人)等人,2013;弗朗茨等人,2015)。一致地,构成谢巴拉叠层石微生物群落的细菌操作分类单位的相对丰度包括光合自养(蓝细菌,16%)和异养(例如,能够还原硫酸盐的分类单元,包括Gammaproteobacteria [12%],Desulfobacteriota [0.8%]的组合。和 Campylobacteriota [0.02%];Madigan et al., 2014;Florentino et al., 2016) 分类群,可以促进不同的代谢过程,有助于叠层石的形成。Sheybarah 叠层石的一个有趣的方面是网状丝的存在(图4E),迄今为止仅在洞穴的无光环境中报道过这种现象(Melim et al., 2015)。在 Sheybarah 叠层石中,这些神秘特征普遍存在于表面微生物垫中,并以可变的形态为特征,包括由垂直柱状结构支撑的水平脊(图 4E)。它们的生物地球化学性质以及它们在这些叠层石的形成和形态结构中的作用尚不清楚,并将成为持续研究的主题。 据我们所知,谢巴拉叠层石的发现是中东此类叠层石的首次发现,在这个独特的地理区域研究其地球生物学的前所未有的机会。现代开放的浅海叠层石在地球上很少存在,导致缺乏合适的古代叠层石类似物。迄今为止,唯一已知的与开阔的浅海环境相似的现代环境,大多数元古代叠层石都是在巴哈马群岛发育的(Dill 等人,1986 年;Reid 和 Browne,1991 年;Reid 等人,1995 年)。 2000)。 Sheybarah叠层石田的发现不仅在科学角度上具有重要意义,而且在生态系统服务和环境遗产意识方面也具有重要意义,这与沙特阿拉伯正在推动的可持续发展和生态旅游发展项目相一致。该地点目前正在考虑成为专门的保护区。我们感谢阿卜杜拉国王科技大学 (KAUST) 为 V. Vahrenkamp 和 D. Daffonchio 提供的基线支持。我们感谢 Red Sea Global 在进入现场地点方面提供的支持。我们感谢 L. Melim 和 H. Westphal 关于网状丝的富有成效的讨论。我们感谢审稿人为改进手稿而提出的建设性意见和反馈。