npj Quantum Information ( IF 6.6 ) Pub Date : 2024-04-30 , DOI: 10.1038/s41534-024-00842-9 Ji Zou 1 , Stefano Bosco 1 , Daniel Loss 1
Correlated noise across multiple qubits poses a significant challenge for achieving scalable and fault-tolerant quantum processors. Despite recent experimental efforts to quantify this noise in various qubit architectures, a comprehensive understanding of its role in qubit dynamics remains elusive. Here, we present an analytical study of the dynamics of driven qubits under spatially correlated noise, including both Markovian and non-Markovian noise. Surprisingly, we find that by operating the qubit system at low temperatures, where correlated quantum noise plays an important role, significant long-lived entanglement between qubits can be generated. Importantly, this generation process can be controlled on-demand by turning the qubit driving on and off. On the other hand, we demonstrate that by operating the system at a higher temperature, the crosstalk between qubits induced by the correlated noise is unexpectedly suppressed. We finally reveal the impact of spatio-temporally correlated 1/f noise on the decoherence rate, and how its temporal correlations restore lost entanglement. Our findings provide critical insights into not only suppressing crosstalk between qubits caused by correlated noise but also in effectively leveraging such noise as a beneficial resource for controlled entanglement generation.
中文翻译:
驱动量子位中空间相关的经典噪声和量子噪声
多个量子位之间的相关噪声对实现可扩展和容错的量子处理器提出了重大挑战。尽管最近在各种量子位架构中量化这种噪声的实验努力,但对其在量子位动力学中的作用的全面理解仍然难以实现。在这里,我们对空间相关噪声(包括马尔可夫噪声和非马尔可夫噪声)下驱动量子位的动力学进行了分析研究。令人惊讶的是,我们发现通过在低温下操作量子位系统(其中相关量子噪声起着重要作用),可以在量子位之间产生显着的长期纠缠。重要的是,可以通过打开和关闭量子位驱动来按需控制这一生成过程。另一方面,我们证明,通过在较高温度下运行系统,由相关噪声引起的量子位之间的串扰意外地被抑制。我们最终揭示了时空相关 1/ f噪声对退相干率的影响,以及其时间相关性如何恢复丢失的纠缠。我们的研究结果不仅为抑制相关噪声引起的量子位之间的串扰提供了重要的见解,而且还为有效利用此类噪声作为受控纠缠生成的有益资源提供了重要的见解。