Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tracking cycles of Phanerozoic opening and closing of ocean basins using detrital rutile and zircon geochronology and geochemistry
Geology ( IF 4.8 ) Pub Date : 2024-05-01 , DOI: 10.1130/g51826.1 Margaret L. Odlum 1 , Tomas N. Capaldi 1 , Kelly D. Thomson 2 , Daniel F. Stockli 3
Geology ( IF 4.8 ) Pub Date : 2024-05-01 , DOI: 10.1130/g51826.1 Margaret L. Odlum 1 , Tomas N. Capaldi 1 , Kelly D. Thomson 2 , Daniel F. Stockli 3
Affiliation
Sedimentary basins provide a deep time archive of tectonic and Earth-surface processes that can be leveraged by detrital mineral U-Pb dating and geochemistry to track paleogeography, magmatism, and crustal evolution. Zircon preserves the long-term (billions of years) record of supercontinent cycles; however, it is biased toward preserving felsic crustal records. Detrital rutile complements the detrital zircon record by providing constraints on the time and temperature of rifting and mafic magmatism, metamorphism, exhumation of the middle and lower crust, subduction, and amagmatic orogenesis. We use detrital zircon U-Pb and detrital rutile U-Pb geochronology and trace element analysis of Permian to Eocene siliciclastic rocks in the southern Pyrenees to capture supercontinent cycles of ocean basins opening and closing. Detrital rutile age spectra show peaks at ca. 100 Ma associated with rifting and hyperextension in the Pyrenean realm, 200 Ma associated with the Central Atlantic Magmatic Province, and 330 Ma, 375 Ma, and 400 Ma associated with subduction and Rheic Ocean crust formation. Zr-in-rutile thermometry and rutile Cr-Nb systematics provide further insight into metamorphic facies (peak metamorphic temperatures) and source rock lithology (mafic versus felsic affinity). Detrital zircon age spectra have peaks at ca. 300 Ma, 450 Ma, and 600 Ma associated with major orogenic events and felsic magmatism, and Th/U ratios provide information on relative zircon formation temperatures. Comparison of these independent records shows that detrital rutile reflects rifting, magma-poor orogenesis, and oceanic lithospheric processes, while detrital zircon detects continental lithospheric processes. Integrated detrital zircon and rutile data sets archive past geological events across multiple Wilson cycles.Zircon and rutile are stable heavy minerals and nearly ubiquitous in clastic sedimentary rocks. Detrital zircon (DZ) and detrital rutile (DR) are amenable to U-Pb geo- and thermochronology, with different Pb closure temperatures that reflect different geodynamic processes. Compilations of bedrock and DZ U-Pb ages constrain the long-term (billions of years) history of supercontinent formation, and generation and preservation of felsic crust (e.g., Condie et al., 2011). However, gaps in the zircon record correlate with times of supercontinent break-up, highlighting that zircon alone fails to capture the full scope of past geological events. Rutile has the potential to complement the DZ record by filling the gaps and preserving processes occurring during supercontinent break-up, including periods of rifting and mafic magmatism, metamorphism, exhumation of middle and lower crust, and amagmatic orogenesis (e.g., O'Sullivan et al., 2016).We compare DZ U-Pb and DR U-Pb and trace element data from clastic sedimentary rocks in the southern Pyrenees to construct a more complete record of Iberian thermo-tectonic events over the past 850 m.y. The Pyrenees are the modern orogen between the Iberian microplate and Eurasian plate and have a well-studied and complex thermal and tectonic history that spans multiple Wilson cycles. The Pyrenean foreland basins provide a wealth of DZ U-Pb data (e.g., Whitchurch et al., 2011; Vacherat et al., 2017; Thomson et al., 2017; Odlum et al., 2019), as do the Alps foreland basins (Krippner and Bahlburg, 2013; Mark et al., 2016), which show that geologic events younger than ca. 275 Ma are not captured in the DZ record. This study highlights that DR U-Pb captures thermal and tectonic events that are underrepresented by DZ, including rifting and mafic magmatism, magma-poor hyperextension, and oceanic subduction. Integrating detrital U-Pb age information from DZ and DR has potential to elucidate geodynamic histories involving both continental and oceanic lithosphere preserved in the sedimentary record.The Iberian-Pyrenean basement assemblages and associated basin strata contain a protracted thermal-tectonic history spanning the Pyrenean (Alpine), Pangean, and Gondwanan continental cycles. The Axial Zone is the structurally thickened core of the Pyrenees characterized by a south-vergent antiformal stack of thrust sheets composed of Neoproterozoic and Paleozoic metasedimentary rocks, Neoproterozoic to Ordovician metamorphic rocks, and Carboniferous granitic plutons (Fig. 1). Neoproterozoic to Ordovician metamorphic rocks reflect two main episodes of magmatism and subsequent metamorphism, including Ediacaran–early Cambrian magmatism between 580 and 540 Ma and Early Ordovician magmatism and metamorphism dated between 475 and 460 Ma, which are attributed to the final stages of the Cadomian orogen and transition to the opening of the Rheic Ocean (e.g., Castiñeiras et al., 2008; Guille et al., 2019; Javier Álvaro et al., 2020). The Neoproterozoic and Paleozoic metasedimentary units can be broadly divided into two groups: Neoproterozoic to Ordovician metasedimentary rocks whose protoliths were deposited in Cadomian back-arc basins, and Silurian to Carboniferous metasedimentary rocks that were deposited in passive margin to foreland basin settings. These units were intruded by dominantly felsic plutons during the Carboniferous that are dated between 298 and 315 Ma (e.g., Fernández-Suárez et al., 2000; Vacherat et al., 2017) and crop out in the Pyrenees Axial Zone, Ebro Massif, and Catalan Coastal Ranges (Fig. 1). The Permian–Triassic sedimentary strata are mostly nonmarine siliciclastic units overlain by Jurassic–Lower Cretaceous predominantly carbonate strata that were deposited in isolated rift basins.In the French retrowedge, the North Pyrenean Zone is an inverted hyperextended rift system characterized by steep north-verging reverse faults, which exhumed Paleozoic basement massifs that have similar lithologies as the Axial Zone basement, and highly deformed and partially high-temperature low-pressure (HT-LP) metamorphic Mesozoic siliciclastic and carbonate strata (e.g., Lagabrielle et al., 2010). The Spanish prowedge South Pyrenean Zone is a south-verging thin-skinned fold-thrust belt that translated Upper Cretaceous to Eocene foreland basin deposits above a Triassic evaporitic décollement during the Late Cretaceous to Miocene Pyrenean orogeny (e.g., Muñoz, 1992; Puigdefàbregas et al., 1992; Vergés et al., 2002).Fifteen medium-grained sandstone samples were collected from Permian to Eocene units in the southern Pyrenees (Fig. 1; File S1 in the Supplemental Material1). DZ and DR U-Pb and trace element analyses were performed by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) at the University of Texas at Austin following the approach of Odlum et al. (2019). Detailed methodology, data visualization, and geochronology and geochemistry data sets can be found in Files S1, S2, and S3 in the Supplemental Material.Zircon is a high-refractory accessory mineral that most commonly forms in intermediate to felsic igneous assemblages and high-grade metamorphic rocks. Experimental data for diffusion of Pb in zircon indicate a closure temperature >900 °C, well above its crystallization temperature (Cherniak and Watson, 2001). The Th/U ratios in zircon can be used as a proxy for crystallization temperatures, where high Th/U indicates magmatic zircon and high crystallization temperatures, and low Th/U is indicative of metamorphic zircon growth and lower crystallization temperatures (Watson and Harrison, 1983).Composite zircon U-Pb age distributions of the samples (Fig. 2A) are characterized by pre-Alpine ages with distributions that include a prominent 280–335 Ma component with an age peak at 304 Ma, subordinate components of 450–520 Ma and 530–675 Ma, and minor age populations of 350–375 Ma and 725–825 Ma. The Th/U values of zircon with Devonian to Permian U-Pb ages cluster between 0.25–0.75. The Th/U values of zircon >550 Ma are high and dispersed between 0–1.5, whereas zircon aged 450–500 Ma have lower and less-dispersed Th/U values between 0–0.5 (Fig. 2B).Rutile predominantly forms in metamorphic rocks and has a Pb closure temperature between ~500–650 °C, making it sensitive to thermal processes in the middle to lower crust (Vry and Baker, 2006; Kooijman et al., 2010). Rutile trace elements retain information on source rock protolith and metamorphic conditions, including the Cr-Nb discrimination index to differentiate between metamafic and metafelsic protoliths (Triebold et al., 2012) and the Zr-in-rutile thermometer to determine peak metamorphic temperatures (e.g., Triebold et al., 2012; Kohn, 2020).Rutile U-Pb ages and geochemistry from the compiled samples (Figs. 2C and 2D) exhibit major age components of: (1) 80–135 Ma with a peak at ca. 105 Ma with both mafic and felsic affinities and Zr-in-rutile temperatures 400–600 °C; (2) 180–240 Ma with a peak at ca. 200 Ma and a minor shoulder peak at ca. 220 Ma that have high Zr-in-rutile temperatures between 800–1000 °C from predominantly mafic lithologies; and (3) Paleozoic ages between 320–425 Ma with peaks at ca. 348–400 Ma with both mafic and felsic affinities and dominant Zr-in-rutile temperatures between 500–750 °C. Detrital rutile grains with Devonian to Ordovician U-Pb ages (375–450 Ma) display two clusters, with metamorphic temperatures clustered around 700–750 °C and around 500–600 °C. Minor age components include a broad distribution of 550–750 Ma grains with highly variable crystallization temperatures and predominantly felsic lithologies (Fig. 2D).Our composite detrital data set is interpreted to show that integrating DZ and DR data provides a holistic record of thermal and tectonic processes along the Iberian margin during the Alpine (20–275 Ma), Pangean (275–525 Ma), and Gondwanan (525–725 Ma) continental cycles. The composite detrital data set demonstrates that DZ U-Pb data record felsic arc magmatism and/or metamorphism during ocean-continent subduction and orogenesis (e.g., Condie et al., 2011), whereas DR U-Pb data record rifting and mafic magmatism, middle to lower crustal exhumation, and subduction metamorphism.The composite DZ age distribution is characterized by pre-Alpine (>275 Ma) ages. The 280–335 Ma and 350–375 Ma zircon age components with Th/U >0.1 reflect magmatism associated with the Variscan orogenic cycle (Fig. 2A). The Variscan cycle had three phases of magmatism, including an early phase of intermediate and mafic magmatism from 330–350 Ma (Gutiérrez-Alonso et al., 2018), synextensional collapse magmatism and intrusion of granitoids from ca. 315–325 Ma (e.g., Fernández-Suárez et al., 2000; Díez Fernández and Pereira, 2016), and postorogenic granitoids interpreted to be associated with lithospheric delamination from ca. 290–305 Ma (e.g., Fernández-Suárez et al., 2000; Gutiérrez-Alonso et al., 2011). The DZ ages capture the two latter felsic phases that were sourced from the granite plutons in the Axial Zone, Ebro Massif, and Catalan Coastal Ranges (Fig. 1).The 530–580 Ma and 450–520 Ma DZ ages with increasing proportions of low-Th/U grains (and decreasing mean and median Th/U) across the Ediacaran into the Cambrian–Ordovician (Fig. 2C) reflect Andean-type continental magmatism that was driven by the subduction of the Iapetus oceanic crust below Gondwana during the Cadomian orogenic cycle (Stampfli et al., 2002; von Raumer et al., 2002). The broad DZ peak from 450–500 Ma records the Early Ordovician magmatic event that is recognized throughout the Pyrenees and Alps and may be related to back-arc rifting (Deloule et al., 2002; Cocherie et al., 2005). The 600–675 Ma DZ are derived from igneous and metamorphic rocks formed during the Pan-African orogeny in the core of Gondwana. The large scatter in DZ Th/U values indicates coeval felsic and mafic magmatism with a decrease in proportion of low-Th/U grains from Pan-African magmatism (600–700 Ma) to Rodinian break-up (725–850 Ma).The composite DR age distribution has notable differences from the DZ age distribution, especially post-Variscan (<250 Ma) where there are age peaks associated with phases of Permian–Jurassic rifting (170–240 Ma) and Early Cretaceous rifting and HT-LP metamorphism (80–135 Ma). The 80–135 Ma DR record greenschist to amphibolite facies temperatures (400–600 °C) and have both felsic and mafic affinities. We interpret the ages of these grains to be cooling ages that record Early Cretaceous exhumation of greenschist to amphibolite grade metamorphic rocks of the North Pyrenean Zone, high-temperature synrift metamorphism, and potentially some minor preservation of mafic alkaline magmatism associated with rifting (Montigny et al., 1986). In the North Pyrenean Zone, bedrock samples and modern river sediment contain rutile and apatite U-Pb ages between 95–120 Ma recording Early Cretaceous exhumation (Capaldi et al., 2022). The 180–240 Ma DR have dominantly mafic affinities and >800 °C Zr-in-rutile temperatures (Fig. 2C) and are interpreted to record coeval HT metamorphism during Atlantic rifting (220 Ma peak) and Central Atlantic Magmatic Province (CAMP; 200 Ma peak) magmatism. CAMP intrusions in Iberia have been previously dated at ca. 200 Ma (e.g., Marzoli et al., 2018, and references therein), overlapping with the peak DR U-Pb ages.The 325–390 Ma DR record closing of the Rheic Ocean through the subduction of Rheic oceanic lithosphere along the external edge of Gondwana (Arenas et al., 1995). The mafic 320–350 Ma DR are likely associated with the early Variscan phase of intermediate to mafic magmatism and metamorphism (Gutiérrez-Alonso et al., 2018), whereas the felsic 320–380 Ma rutile likely record lower-crustal metamorphism and exhumation during Variscan continental collision and HP metamorphism during subduction and exhumation of HP rocks beginning ca. 375 Ma (Paquette et al., 2017). The 390–425 Ma DR peak reflects Rheic Ocean opening, which initiated between 450 Ma and as young as 395 Ma (Nance et al., 2012), and coeval early subduction of oceanic crust beneath Iberia and associated arc magmatism. The record of ocean opening is reflected by a significant component of 390–425 Ma DR that have Zr-in-rutile temperatures >650 °C (Fig. 2D) and a lack of DZ U-Pb ages in this range (Fig. 2A), whereas the coeval early subduction of oceanic lithosphere is recorded by DR with overlapping ages but lower Zr-in-rutile temperatures of 500–550 °C interpreted as lower-temperature subduction metamorphic origin (Fig. 2D). The minor DR at 450–475 Ma record an Early Ordovician magmatic event that is recognized throughout the Pyrenees (Deloule et al., 2002; Cocherie et al., 2005) and likely record the intermediate to mafic phases of Ordovician back-arc magmatism and metamorphism. DR and DZ display similar detrital age distributions of 550–850 Ma that were initially derived from the igneous and metamorphic rocks formed during the Pan-African orogeny in the core of Gondwana and recycled out of amphibolite-eclogite grade (600–800 °C) metapelitic units within the present-day Axial Zone.The detrital rutile record preserves evidence of events that are absent from the detrital zircon record. In the Pyrenean realm, these include ca. 100 Ma, 200 Ma, and 220 Ma rifting events that are associated with the break-up of Pangea and opening of the Atlantic Ocean and Bay of Biscay, as well as 450–390 Ma mafic rutile interpreted to reflect Rheic Ocean opening. The detrital zircon preserve evidence of felsic magmatism associated with arc magmatism and orogenesis that are mostly absent in detrital rutile age distributions, including the ca. 300 Ma Variscan magmatism, 450–525 Ma felsic Peri-Gondwanan–Cadomian magmatism, and 600–700 Ma Pan-African orogeny. Though the detrital rutile record captures much of the post-Variscan history of Iberia that is missed by detrital zircon, signatures of the Late Cretaceous to Miocene Pyrenean orogeny are not archived by zircon nor rutile U-Pb geo- and thermochronology because the orogeny was amagmatic and any rocks metamorphosed during this period have not been exhumed to the surface. The two complementary detrital records are more powerful together than in isolation and together can detect complete cycles of continental break-up and assembly, where detrital rutile records rifting and ocean opening while detrital zircon is sensitive to ocean closing and collision.This manuscript benefited from scientific discussions with M. Roigé, A. Fildani, J. Clark, C. Puigdefàbregas, D. Barber, and F. Galster. We thank Robert Holder, Teresa Schwartz, and two anonymous reviewers for their thoughtful reviews that improved this manuscript, and Andrew Barth for editorial handling. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
中文翻译:
利用碎屑金红石和锆石地质年代学和地球化学跟踪海洋盆地显生宙打开和关闭的周期
沉积盆地提供了构造和地球表面过程的深层时间档案,可通过碎屑矿物 U-Pb 测年和地球化学来追踪古地理、岩浆作用和地壳演化。锆石保存了超大陆周期的长期(数十亿年)记录;然而,它偏向于保存长英质地壳记录。碎屑金红石通过提供对裂谷和镁铁质岩浆作用、变质作用、中下地壳折返、俯冲和非岩浆造山作用的时间和温度的限制来补充碎屑锆石记录。我们利用碎屑锆石 U-Pb 和碎屑金红石 U-Pb 年代学以及对比利牛斯山脉南部二叠纪至始新世硅质碎屑岩的微量元素分析来捕获洋盆打开和闭合的超大陆旋回。碎屑金红石年龄光谱显示峰值位于约。 100 Ma 与比利牛斯地区的裂谷和超伸展有关,200 Ma 与中大西洋岩浆省有关,330 Ma、375 Ma 和 400 Ma 与俯冲和瑞克洋地壳形成有关。金红石中锆测温和金红石 Cr-Nb 系统学可进一步深入了解变质相(峰值变质温度)和烃源岩岩性(镁铁质与长英质亲和力)。碎屑锆石年龄谱在约 处有峰值。与主要造山活动和长英质岩浆作用相关的 300 Ma、450 Ma 和 600 Ma 以及 Th/U 比值提供了有关相对锆石形成温度的信息。这些独立记录的比较表明,碎屑金红石反映了裂谷、贫岩浆造山作用和大洋岩石圈过程,而碎屑锆石则检测了大陆岩石圈过程。综合碎屑锆石和金红石数据集存档了多个威尔逊旋回中过去的地质事件。锆石和金红石是稳定的重矿物,在碎屑沉积岩中几乎无处不在。碎屑锆石 (DZ) 和碎屑金红石 (DR) 符合 U-Pb 地质年代学和热年代学,不同的 Pb 闭合温度反映了不同的地球动力学过程。基岩和 DZ U-Pb 年龄的汇编限制了超大陆形成的长期(数十亿年)历史以及长英质地壳的生成和保存(例如,Condie 等,2011)。然而,锆石记录中的空白与超大陆分裂的时间相关,这突显出仅靠锆石无法捕获过去地质事件的全部范围。金红石有潜力通过填补超大陆分裂期间发生的空白和保存过程来补充 DZ 记录,包括裂谷和基性岩浆作用、变质作用、中下地壳折返以及无岩浆造山作用时期(例如,O'Sullivan 等) al., 2016)。我们比较了 DZ U-Pb 和 DR U-Pb 以及来自比利牛斯山脉南部碎屑沉积岩的微量元素数据,以构建过去 850 年伊比利亚热构造事件的更完整记录。比利牛斯山脉是伊比利亚微板块和欧亚板块之间的现代造山带,拥有经过充分研究且复杂的热和构造历史,跨越多个威尔逊旋回。比利牛斯前陆盆地提供了丰富的 DZ U-Pb 数据(例如,Whitchurch 等,2011;Vacherat 等,2017;Thomson 等,2017;Odlum 等,2019),阿尔卑斯山前陆也是如此。盆地(Krippner 和 Bahlburg,2013;Mark 等人,2016),这表明地质事件早于约。 DZ 记录中未捕获 275 Ma。这项研究强调,DR U-Pb 捕获了 DZ 未充分代表的热和构造事件,包括裂谷和镁铁质岩浆作用、贫岩浆超伸展和大洋俯冲。整合来自 DZ 和 DR 的碎屑 U-Pb 年龄信息有可能阐明沉积记录中保存的涉及大陆和海洋岩石圈的地球动力学历史。伊比利亚-比利牛斯基底组合和相关盆地地层包含跨越比利牛斯山脉的长期热构造历史(高山)、盘古大陆和冈瓦纳大陆旋回。轴带是比利牛斯山脉结构增厚的核心,其特征是由新元古代和古生代变质沉积岩、新元古代至奥陶纪变质岩和石炭纪花岗岩岩体组成的南向逆冲板叠层(图1)。新元古代至奥陶纪变质岩反映了两次主要的岩浆作用和随后的变质作用,包括580~540 Ma之间的埃迪卡拉纪-早寒武世岩浆作用和475~460 Ma之间的早奥陶世岩浆作用和变质作用,这归因于卡多姆造山带的最后阶段以及向瑞克洋开放的过渡(例如,Castiñeiras 等人,2008 年;Guille 等人,2019 年;Javier Álvaro 等人,2020 年)。新元古代和古生代变沉积岩单元大致可分为两类:原岩沉积在卡多姆弧后盆地的新元古代至奥陶纪变沉积岩,以及沉积在前陆盆地被动边缘的志留纪至石炭纪变沉积岩。这些单元在石炭纪期间被主要为长英质的岩体侵入,其年代可追溯至 298 Ma 至 315 Ma(例如,Fernández-Suárez 等人,2000 年;Vacherat 等人,2017 年),并在比利牛斯轴心带、埃布罗地块中出现。和加泰罗尼亚海岸山脉(图 1)。二叠纪-三叠纪沉积地层主要是陆相硅质碎屑单元,上面覆盖着侏罗纪-下白垩统主要是碳酸盐岩地层,这些地层沉积在孤立的裂谷盆地中。断层,挖掘出古生代基底地块,其岩性与轴带基底相似,以及高度变形和部分高温低压(HT-LP)变质中生代硅质碎屑岩和碳酸盐岩地层(例如,Lagabrielle 等,2010)。西班牙前缘南比利牛斯带是一条向南边缘的薄皮褶皱冲断带,在晚白垩世至中新世比利牛斯造山运动期间,将上白垩世至始新世前陆盆地沉积物转化为三叠纪蒸发滑脱带(例如,Muñoz,1992;Puigdefàbregas 等人) ., 1992; Vergés et al., 2002)。从比利牛斯山脉南部的二叠纪到始新世单元采集了 15 个中粒砂岩样品(图 1;补充材料 1 中的文件 S1)。 DZ 和 DR U-Pb 以及微量元素分析是按照 Odlum 等人的方法在德克萨斯大学奥斯汀分校采用激光烧蚀电感耦合等离子体质谱 (LA-ICP-MS) 进行的。 (2019)。详细的方法、数据可视化以及地质年代学和地球化学数据集可以在补充材料中的文件 S1、S2 和 S3 中找到。锆石是一种高难熔副矿物,最常见于中长英质火成岩组合和高品位岩浆岩中。变质岩。 Pb 在锆石中扩散的实验数据表明闭合温度 >900 °C,远高于其结晶温度(Cherniak 和 Watson,2001)。锆石中的 Th/U 比率可用作结晶温度的代表,其中高 Th/U 表明岩浆锆石和高结晶温度,而低 Th/U 则表明变质锆石生长和较低的结晶温度(Watson 和 Harrison, 1983)样品的复合锆石U-Pb年龄分布(图2A)以前阿尔卑斯年龄为特征,其分布包括突出的280-335 Ma成分,年龄峰值为304 Ma,次要成分为450-520 Ma Ma和530-675 Ma,以及350-375 Ma和725-825 Ma的未成年群体。泥盆纪至二叠纪 U-Pb 年龄的锆石 Th/U 值集中在 0.25-0.75 之间。 >550 Ma 的锆石的 Th/U 值较高且分散在 0–1.5 之间,而年龄为 450–500 Ma 的锆石的 Th/U 值较低且分散较小,在 0–0.5 之间(图 2B)。金红石主要形成于变质岩的 Pb 闭合温度约为 500-650 °C,使其对中下地壳的热过程敏感(Vry 和 Baker,2006;Kooijman 等,2010)。金红石微量元素保留了有关烃源岩原岩和变质条件的信息,包括用于区分变镁铁质和变长英质原岩的 Cr-Nb 判别指数(Triebold 等,2012)以及用于确定峰值变质温度的 Zr-in-rutile 温度计(例如,Triebold 等,2012;Kohn,2020)。编译样本的金红石 U-Pb 年龄和地球化学(图 2C 和 2D)显示出主要年龄成分:(1) 80–135 Ma,峰值位于 ca。 105 Ma,具有镁铁质和长英质亲和力,金红石中的 Zr 温度为 400–600 °C; (2) 180–240 Ma,峰值位于约。200 Ma 和约 200 Ma 处的小肩峰。 220 Ma,金红石中 Zr 温度高达 800–1000 °C,主要来自镁铁质岩性; (3) 古生代年龄在 320-425 Ma 之间,峰值约为 100 Ma。 348–400 Ma,同时具有镁铁质和长英质亲和力,金红石中 Zr 的主要温度在 500–750 °C 之间。泥盆纪至奥陶纪 U-Pb 年龄(375-450 Ma)的碎屑金红石颗粒显示出两个簇,变质温度集中在 700-750 °C 和 500-600 °C 左右。次要年龄成分包括广泛分布的 550–750 Ma 颗粒,具有高度可变的结晶温度和主要是长英质岩性(图 2D)。我们的复合碎屑数据集被解释为表明,整合 DZ 和 DR 数据提供了热和阿尔卑斯山(20-275 Ma)、盘古大陆(275-525 Ma)和冈瓦南(525-725 Ma)大陆旋回期间沿伊比利亚边缘的构造过程。复合碎屑数据集表明,DZ U-Pb 数据记录了洋-大陆俯冲和造山作用期间的长英质弧岩浆作用和/或变质作用(例如,Condie 等,2011),而 DR U-Pb 数据记录了裂谷和镁铁质岩浆作用,中下地壳折返和俯冲变质作用。复合DZ年龄分布以前阿尔卑斯山(>275 Ma)年龄为特征。 Th/U >0.1 的 280–335 Ma 和 350–375 Ma 锆石年龄成分反映了与 Variscan 造山旋回相关的岩浆作用(图 2A)。 Variscan旋回有三个阶段的岩浆作用,包括330-350 Ma的中质和镁铁质岩浆作用的早期阶段(Gutiérrez-Alonso等,2018)、同伸展塌陷岩浆作用和大约1950年的花岗岩侵入。 315–325 Ma(例如,Fernández-Suárez 等人,2000;Díez Fernández 和 Pereira,2016),造山后花岗岩被解释为与大约 315-325 Ma 的岩石圈脱层有关。 290–305 Ma(例如,Fernández-Suárez 等人,2000;Gutiérrez-Alonso 等人,2011)。 DZ 年龄捕获了后两个长英质相,它们源自轴心带、埃布罗地块和加泰罗尼亚海岸山脉的花岗岩岩体(图 1)。530–580 Ma 和 450–520 Ma DZ 年龄的比例不断增加穿过埃迪卡拉纪进入寒武纪-奥陶纪的低Th/U颗粒(以及降低的平均和中值Th/U)(图2C)反映了安第斯型大陆岩浆作用,该岩浆作用是由冈瓦纳大陆以下的土卫八洋壳俯冲所驱动的卡多姆造山旋回(Stampfli 等,2002;von Raumer 等,2002)。 450-500 Ma 的宽 DZ 峰记录了早奥陶世的岩浆事件,该事件在整个比利牛斯山脉和阿尔卑斯山都被认可,并且可能与弧后裂谷有关(Deloule 等,2002;Cocherie 等,2005)。 600-675 Ma DZ 源自冈瓦纳核心泛非造山运动期间形成的火成岩和变质岩。DZ Th/U 值的大分散表明同时代的长英质和镁铁质岩浆作用,从泛非岩浆作用 (600–700 Ma) 到罗迪尼期裂解 (725–850 Ma),低 Th/U 颗粒的比例有所下降。复合 DR 年龄分布与 DZ 年龄分布有显着差异,特别是后 Variscan(<250 Ma),其中存在与二叠纪-侏罗纪裂谷(170-240 Ma)和早白垩世裂谷和 HT-LP 阶段相关的年龄峰值变质作用(80–135 Ma)。 80–135 Ma DR 记录了绿片岩到角闪岩相的温度(400–600 °C),并且具有长英质和镁铁质的亲和性。我们将这些颗粒的年龄解释为冷却年龄,记录了早白垩世绿片岩折返到北比利牛斯带角闪岩级变质岩、高温同裂谷变质作用,以及与裂谷相关的镁铁质碱性岩浆作用的潜在保存(Montigny等)等,1986)。在北比利牛斯带,基岩样本和现代河流沉积物含有金红石和磷灰石 U-Pb 年龄在 95-120 Ma 之间,记录了早白垩世的折返(Capaldi 等人,2022)。 180-240 Ma DR 主要具有镁铁质亲和力和 >800 °C 金红石中 Zr 温度(图 2C),并被解释为记录了大西洋裂谷(220 Ma 峰值)和中大西洋岩浆省(CAMP; 200 Ma峰值)岩浆作用。此前,CAMP 对伊比利亚半岛的入侵已于大约 10 年前发生。 200 Ma(例如,Marzoli et al., 2018,以及其中的参考文献),与峰值 DR U-Pb 年龄重叠。325-390 Ma DR 记录通过沿外缘俯冲 Rheic 洋岩石圈导致 Rheic 洋闭合冈瓦纳古陆(Arenas 等,1995)。镁铁质 320–350 Ma DR 可能与早期 Variscan 阶段的中间至镁铁质岩浆作用和变质作用有关 (Gutiérrez-Alonso et al., 2018),而长英质 320–380 Ma 金红石可能记录了早期地壳变质作用和折返作用。瓦里斯大陆碰撞和高压岩石在俯冲和折返过程中的高压变质作用始于约。 375 Ma(Paquette 等人,2017)。 390-425 Ma DR 峰值反映了瑞克洋的张开,该张开始于 450 Ma 至 395 Ma 之间(Nance 等,2012),以及同时代的伊比利亚半岛下方洋壳的早期俯冲和相关的弧岩浆作用。海洋开放的记录反映在 390–425 Ma DR 的一个重要组成部分,其金红石中 Zr 温度>650 °C(图 2D),并且在此范围内缺乏 DZ U-Pb 年龄(图 2A) ),而大洋岩石圈的同期早期俯冲是由 DR 记录的,年龄重叠,但金红石中 Zr 温度较低(500-550 °C),解释为低温俯冲变质起源(图 2D)。 450-475 Ma 的次要 DR 记录了整个比利牛斯山脉地区公认的早奥陶世岩浆事件(Deloule 等人,2002 年;Cocherie 等人,2005)并可能记录了奥陶纪弧后岩浆作用和变质作用的中间至镁铁质阶段。 DR 和 DZ 显示相似的碎屑年龄分布,均为 550–850 Ma,最初源自冈瓦纳核心泛非造山运动期间形成的火成岩和变质岩,并从角闪岩-榴辉岩级(600–800 °C)回收现今轴带内的变质岩单元。碎屑金红石记录保留了碎屑锆石记录中缺失的事件证据。在比利牛斯山地区,这些包括大约。 100 Ma、200 Ma 和 220 Ma 裂谷事件与盘古大陆的分裂以及大西洋和比斯开湾的开放有关,以及 450-390 Ma 镁铁质金红石被解释为反映了瑞克洋的开放。碎屑锆石保留了与弧岩浆作用和造山作用相关的长英质岩浆作用的证据,这些证据在碎屑金红石年龄分布中大多不存在,包括大约300 Ma 瓦里斯坎岩浆作用,450-525 Ma 长英质近冈瓦南-卡多姆岩浆作用,以及 600-700 Ma 泛非造山运动。尽管碎屑金红石记录捕捉到了碎屑锆石所遗漏的大部分伊比利亚后瓦里西亚历史,但锆石或金红石 U-Pb 地质年代学和热年代学并未记录晚白垩世至中新世比利牛斯造山运动的特征,因为造山运动是非岩浆运动在此期间变质的任何岩石都没有被挖掘到地表。这两个互补的碎屑记录在一起比单独在一起更强大,并且一起可以检测大陆分裂和聚合的完整周期,其中碎屑金红石记录裂谷和海洋开放,而碎屑锆石对海洋关闭和碰撞敏感。本手稿受益于科学与 M. Roigé、A. Fildani、J. Clark、C. Puigdefàbregas、D. Barber 和 F. Galster 的讨论。我们感谢罗伯特·霍尔德(Robert Holder)、特雷莎·施瓦茨(Teresa Schwartz)和两位匿名审稿人的深思熟虑的评论,改进了这份手稿,并感谢安德鲁·巴特(Andrew Barth)的编辑处理。任何贸易、公司或产品名称的使用仅用于描述目的,并不意味着美国政府的认可。碎屑锆石保留了与弧岩浆作用和造山作用相关的长英质岩浆作用的证据,这些证据在碎屑金红石年龄分布中大多不存在,包括大约300 Ma 瓦里斯坎岩浆活动,450-525 Ma 长英质近冈瓦南-卡多姆岩浆活动,以及 600-700 Ma 泛非造山运动。尽管碎屑金红石记录捕捉到了碎屑锆石所遗漏的大部分伊比利亚后瓦里西亚历史,但锆石或金红石 U-Pb 地质和热年代学并未记录晚白垩世至中新世比利牛斯造山运动的特征,因为造山运动是非岩浆运动在此期间变质的任何岩石都没有被挖掘到地表。这两个互补的碎屑记录在一起比单独在一起更强大,并且一起可以检测大陆分裂和聚合的完整周期,其中碎屑金红石记录裂谷和海洋开放,而碎屑锆石对海洋关闭和碰撞敏感。本手稿受益于科学与 M. Roigé、A. Fildani、J. Clark、C. Puigdefàbregas、D. Barber 和 F. Galster 的讨论。我们感谢罗伯特·霍尔德(Robert Holder)、特雷莎·施瓦茨(Teresa Schwartz)和两位匿名审稿人的深思熟虑的评论,改进了这份手稿,并感谢安德鲁·巴特(Andrew Barth)的编辑处理。任何贸易、公司或产品名称的使用仅用于描述目的,并不意味着美国政府的认可。碎屑锆石保留了与弧岩浆作用和造山作用相关的长英质岩浆作用的证据,这些证据在碎屑金红石年龄分布中大多不存在,包括大约300 Ma 瓦里斯坎岩浆活动,450-525 Ma 长英质近冈瓦南-卡多姆岩浆活动,以及 600-700 Ma 泛非造山运动。尽管碎屑金红石记录捕捉到了碎屑锆石所遗漏的大部分伊比利亚后瓦里西亚历史,但锆石或金红石 U-Pb 地质和热年代学并未记录晚白垩世至中新世比利牛斯造山运动的特征,因为造山运动是非岩浆运动在此期间变质的任何岩石都没有被挖掘到地表。这两个互补的碎屑记录在一起比单独在一起更强大,并且一起可以检测大陆分裂和聚合的完整周期,其中碎屑金红石记录裂谷和海洋开放,而碎屑锆石对海洋关闭和碰撞敏感。本手稿受益于科学与 M. Roigé、A. Fildani、J. Clark、C. Puigdefàbregas、D. Barber 和 F. Galster 的讨论。我们感谢罗伯特·霍尔德(Robert Holder)、特雷莎·施瓦茨(Teresa Schwartz)和两位匿名审稿人的深思熟虑的评论,改进了这份手稿,并感谢安德鲁·巴特(Andrew Barth)的编辑处理。任何贸易、公司或产品名称的使用仅用于描述目的,并不意味着美国政府的认可。
更新日期:2024-05-01
中文翻译:
利用碎屑金红石和锆石地质年代学和地球化学跟踪海洋盆地显生宙打开和关闭的周期
沉积盆地提供了构造和地球表面过程的深层时间档案,可通过碎屑矿物 U-Pb 测年和地球化学来追踪古地理、岩浆作用和地壳演化。锆石保存了超大陆周期的长期(数十亿年)记录;然而,它偏向于保存长英质地壳记录。碎屑金红石通过提供对裂谷和镁铁质岩浆作用、变质作用、中下地壳折返、俯冲和非岩浆造山作用的时间和温度的限制来补充碎屑锆石记录。我们利用碎屑锆石 U-Pb 和碎屑金红石 U-Pb 年代学以及对比利牛斯山脉南部二叠纪至始新世硅质碎屑岩的微量元素分析来捕获洋盆打开和闭合的超大陆旋回。碎屑金红石年龄光谱显示峰值位于约。 100 Ma 与比利牛斯地区的裂谷和超伸展有关,200 Ma 与中大西洋岩浆省有关,330 Ma、375 Ma 和 400 Ma 与俯冲和瑞克洋地壳形成有关。金红石中锆测温和金红石 Cr-Nb 系统学可进一步深入了解变质相(峰值变质温度)和烃源岩岩性(镁铁质与长英质亲和力)。碎屑锆石年龄谱在约 处有峰值。与主要造山活动和长英质岩浆作用相关的 300 Ma、450 Ma 和 600 Ma 以及 Th/U 比值提供了有关相对锆石形成温度的信息。这些独立记录的比较表明,碎屑金红石反映了裂谷、贫岩浆造山作用和大洋岩石圈过程,而碎屑锆石则检测了大陆岩石圈过程。综合碎屑锆石和金红石数据集存档了多个威尔逊旋回中过去的地质事件。锆石和金红石是稳定的重矿物,在碎屑沉积岩中几乎无处不在。碎屑锆石 (DZ) 和碎屑金红石 (DR) 符合 U-Pb 地质年代学和热年代学,不同的 Pb 闭合温度反映了不同的地球动力学过程。基岩和 DZ U-Pb 年龄的汇编限制了超大陆形成的长期(数十亿年)历史以及长英质地壳的生成和保存(例如,Condie 等,2011)。然而,锆石记录中的空白与超大陆分裂的时间相关,这突显出仅靠锆石无法捕获过去地质事件的全部范围。金红石有潜力通过填补超大陆分裂期间发生的空白和保存过程来补充 DZ 记录,包括裂谷和基性岩浆作用、变质作用、中下地壳折返以及无岩浆造山作用时期(例如,O'Sullivan 等) al., 2016)。我们比较了 DZ U-Pb 和 DR U-Pb 以及来自比利牛斯山脉南部碎屑沉积岩的微量元素数据,以构建过去 850 年伊比利亚热构造事件的更完整记录。比利牛斯山脉是伊比利亚微板块和欧亚板块之间的现代造山带,拥有经过充分研究且复杂的热和构造历史,跨越多个威尔逊旋回。比利牛斯前陆盆地提供了丰富的 DZ U-Pb 数据(例如,Whitchurch 等,2011;Vacherat 等,2017;Thomson 等,2017;Odlum 等,2019),阿尔卑斯山前陆也是如此。盆地(Krippner 和 Bahlburg,2013;Mark 等人,2016),这表明地质事件早于约。 DZ 记录中未捕获 275 Ma。这项研究强调,DR U-Pb 捕获了 DZ 未充分代表的热和构造事件,包括裂谷和镁铁质岩浆作用、贫岩浆超伸展和大洋俯冲。整合来自 DZ 和 DR 的碎屑 U-Pb 年龄信息有可能阐明沉积记录中保存的涉及大陆和海洋岩石圈的地球动力学历史。伊比利亚-比利牛斯基底组合和相关盆地地层包含跨越比利牛斯山脉的长期热构造历史(高山)、盘古大陆和冈瓦纳大陆旋回。轴带是比利牛斯山脉结构增厚的核心,其特征是由新元古代和古生代变质沉积岩、新元古代至奥陶纪变质岩和石炭纪花岗岩岩体组成的南向逆冲板叠层(图1)。新元古代至奥陶纪变质岩反映了两次主要的岩浆作用和随后的变质作用,包括580~540 Ma之间的埃迪卡拉纪-早寒武世岩浆作用和475~460 Ma之间的早奥陶世岩浆作用和变质作用,这归因于卡多姆造山带的最后阶段以及向瑞克洋开放的过渡(例如,Castiñeiras 等人,2008 年;Guille 等人,2019 年;Javier Álvaro 等人,2020 年)。新元古代和古生代变沉积岩单元大致可分为两类:原岩沉积在卡多姆弧后盆地的新元古代至奥陶纪变沉积岩,以及沉积在前陆盆地被动边缘的志留纪至石炭纪变沉积岩。这些单元在石炭纪期间被主要为长英质的岩体侵入,其年代可追溯至 298 Ma 至 315 Ma(例如,Fernández-Suárez 等人,2000 年;Vacherat 等人,2017 年),并在比利牛斯轴心带、埃布罗地块中出现。和加泰罗尼亚海岸山脉(图 1)。二叠纪-三叠纪沉积地层主要是陆相硅质碎屑单元,上面覆盖着侏罗纪-下白垩统主要是碳酸盐岩地层,这些地层沉积在孤立的裂谷盆地中。断层,挖掘出古生代基底地块,其岩性与轴带基底相似,以及高度变形和部分高温低压(HT-LP)变质中生代硅质碎屑岩和碳酸盐岩地层(例如,Lagabrielle 等,2010)。西班牙前缘南比利牛斯带是一条向南边缘的薄皮褶皱冲断带,在晚白垩世至中新世比利牛斯造山运动期间,将上白垩世至始新世前陆盆地沉积物转化为三叠纪蒸发滑脱带(例如,Muñoz,1992;Puigdefàbregas 等人) ., 1992; Vergés et al., 2002)。从比利牛斯山脉南部的二叠纪到始新世单元采集了 15 个中粒砂岩样品(图 1;补充材料 1 中的文件 S1)。 DZ 和 DR U-Pb 以及微量元素分析是按照 Odlum 等人的方法在德克萨斯大学奥斯汀分校采用激光烧蚀电感耦合等离子体质谱 (LA-ICP-MS) 进行的。 (2019)。详细的方法、数据可视化以及地质年代学和地球化学数据集可以在补充材料中的文件 S1、S2 和 S3 中找到。锆石是一种高难熔副矿物,最常见于中长英质火成岩组合和高品位岩浆岩中。变质岩。 Pb 在锆石中扩散的实验数据表明闭合温度 >900 °C,远高于其结晶温度(Cherniak 和 Watson,2001)。锆石中的 Th/U 比率可用作结晶温度的代表,其中高 Th/U 表明岩浆锆石和高结晶温度,而低 Th/U 则表明变质锆石生长和较低的结晶温度(Watson 和 Harrison, 1983)样品的复合锆石U-Pb年龄分布(图2A)以前阿尔卑斯年龄为特征,其分布包括突出的280-335 Ma成分,年龄峰值为304 Ma,次要成分为450-520 Ma Ma和530-675 Ma,以及350-375 Ma和725-825 Ma的未成年群体。泥盆纪至二叠纪 U-Pb 年龄的锆石 Th/U 值集中在 0.25-0.75 之间。 >550 Ma 的锆石的 Th/U 值较高且分散在 0–1.5 之间,而年龄为 450–500 Ma 的锆石的 Th/U 值较低且分散较小,在 0–0.5 之间(图 2B)。金红石主要形成于变质岩的 Pb 闭合温度约为 500-650 °C,使其对中下地壳的热过程敏感(Vry 和 Baker,2006;Kooijman 等,2010)。金红石微量元素保留了有关烃源岩原岩和变质条件的信息,包括用于区分变镁铁质和变长英质原岩的 Cr-Nb 判别指数(Triebold 等,2012)以及用于确定峰值变质温度的 Zr-in-rutile 温度计(例如,Triebold 等,2012;Kohn,2020)。编译样本的金红石 U-Pb 年龄和地球化学(图 2C 和 2D)显示出主要年龄成分:(1) 80–135 Ma,峰值位于 ca。 105 Ma,具有镁铁质和长英质亲和力,金红石中的 Zr 温度为 400–600 °C; (2) 180–240 Ma,峰值位于约。200 Ma 和约 200 Ma 处的小肩峰。 220 Ma,金红石中 Zr 温度高达 800–1000 °C,主要来自镁铁质岩性; (3) 古生代年龄在 320-425 Ma 之间,峰值约为 100 Ma。 348–400 Ma,同时具有镁铁质和长英质亲和力,金红石中 Zr 的主要温度在 500–750 °C 之间。泥盆纪至奥陶纪 U-Pb 年龄(375-450 Ma)的碎屑金红石颗粒显示出两个簇,变质温度集中在 700-750 °C 和 500-600 °C 左右。次要年龄成分包括广泛分布的 550–750 Ma 颗粒,具有高度可变的结晶温度和主要是长英质岩性(图 2D)。我们的复合碎屑数据集被解释为表明,整合 DZ 和 DR 数据提供了热和阿尔卑斯山(20-275 Ma)、盘古大陆(275-525 Ma)和冈瓦南(525-725 Ma)大陆旋回期间沿伊比利亚边缘的构造过程。复合碎屑数据集表明,DZ U-Pb 数据记录了洋-大陆俯冲和造山作用期间的长英质弧岩浆作用和/或变质作用(例如,Condie 等,2011),而 DR U-Pb 数据记录了裂谷和镁铁质岩浆作用,中下地壳折返和俯冲变质作用。复合DZ年龄分布以前阿尔卑斯山(>275 Ma)年龄为特征。 Th/U >0.1 的 280–335 Ma 和 350–375 Ma 锆石年龄成分反映了与 Variscan 造山旋回相关的岩浆作用(图 2A)。 Variscan旋回有三个阶段的岩浆作用,包括330-350 Ma的中质和镁铁质岩浆作用的早期阶段(Gutiérrez-Alonso等,2018)、同伸展塌陷岩浆作用和大约1950年的花岗岩侵入。 315–325 Ma(例如,Fernández-Suárez 等人,2000;Díez Fernández 和 Pereira,2016),造山后花岗岩被解释为与大约 315-325 Ma 的岩石圈脱层有关。 290–305 Ma(例如,Fernández-Suárez 等人,2000;Gutiérrez-Alonso 等人,2011)。 DZ 年龄捕获了后两个长英质相,它们源自轴心带、埃布罗地块和加泰罗尼亚海岸山脉的花岗岩岩体(图 1)。530–580 Ma 和 450–520 Ma DZ 年龄的比例不断增加穿过埃迪卡拉纪进入寒武纪-奥陶纪的低Th/U颗粒(以及降低的平均和中值Th/U)(图2C)反映了安第斯型大陆岩浆作用,该岩浆作用是由冈瓦纳大陆以下的土卫八洋壳俯冲所驱动的卡多姆造山旋回(Stampfli 等,2002;von Raumer 等,2002)。 450-500 Ma 的宽 DZ 峰记录了早奥陶世的岩浆事件,该事件在整个比利牛斯山脉和阿尔卑斯山都被认可,并且可能与弧后裂谷有关(Deloule 等,2002;Cocherie 等,2005)。 600-675 Ma DZ 源自冈瓦纳核心泛非造山运动期间形成的火成岩和变质岩。DZ Th/U 值的大分散表明同时代的长英质和镁铁质岩浆作用,从泛非岩浆作用 (600–700 Ma) 到罗迪尼期裂解 (725–850 Ma),低 Th/U 颗粒的比例有所下降。复合 DR 年龄分布与 DZ 年龄分布有显着差异,特别是后 Variscan(<250 Ma),其中存在与二叠纪-侏罗纪裂谷(170-240 Ma)和早白垩世裂谷和 HT-LP 阶段相关的年龄峰值变质作用(80–135 Ma)。 80–135 Ma DR 记录了绿片岩到角闪岩相的温度(400–600 °C),并且具有长英质和镁铁质的亲和性。我们将这些颗粒的年龄解释为冷却年龄,记录了早白垩世绿片岩折返到北比利牛斯带角闪岩级变质岩、高温同裂谷变质作用,以及与裂谷相关的镁铁质碱性岩浆作用的潜在保存(Montigny等)等,1986)。在北比利牛斯带,基岩样本和现代河流沉积物含有金红石和磷灰石 U-Pb 年龄在 95-120 Ma 之间,记录了早白垩世的折返(Capaldi 等人,2022)。 180-240 Ma DR 主要具有镁铁质亲和力和 >800 °C 金红石中 Zr 温度(图 2C),并被解释为记录了大西洋裂谷(220 Ma 峰值)和中大西洋岩浆省(CAMP; 200 Ma峰值)岩浆作用。此前,CAMP 对伊比利亚半岛的入侵已于大约 10 年前发生。 200 Ma(例如,Marzoli et al., 2018,以及其中的参考文献),与峰值 DR U-Pb 年龄重叠。325-390 Ma DR 记录通过沿外缘俯冲 Rheic 洋岩石圈导致 Rheic 洋闭合冈瓦纳古陆(Arenas 等,1995)。镁铁质 320–350 Ma DR 可能与早期 Variscan 阶段的中间至镁铁质岩浆作用和变质作用有关 (Gutiérrez-Alonso et al., 2018),而长英质 320–380 Ma 金红石可能记录了早期地壳变质作用和折返作用。瓦里斯大陆碰撞和高压岩石在俯冲和折返过程中的高压变质作用始于约。 375 Ma(Paquette 等人,2017)。 390-425 Ma DR 峰值反映了瑞克洋的张开,该张开始于 450 Ma 至 395 Ma 之间(Nance 等,2012),以及同时代的伊比利亚半岛下方洋壳的早期俯冲和相关的弧岩浆作用。海洋开放的记录反映在 390–425 Ma DR 的一个重要组成部分,其金红石中 Zr 温度>650 °C(图 2D),并且在此范围内缺乏 DZ U-Pb 年龄(图 2A) ),而大洋岩石圈的同期早期俯冲是由 DR 记录的,年龄重叠,但金红石中 Zr 温度较低(500-550 °C),解释为低温俯冲变质起源(图 2D)。 450-475 Ma 的次要 DR 记录了整个比利牛斯山脉地区公认的早奥陶世岩浆事件(Deloule 等人,2002 年;Cocherie 等人,2005)并可能记录了奥陶纪弧后岩浆作用和变质作用的中间至镁铁质阶段。 DR 和 DZ 显示相似的碎屑年龄分布,均为 550–850 Ma,最初源自冈瓦纳核心泛非造山运动期间形成的火成岩和变质岩,并从角闪岩-榴辉岩级(600–800 °C)回收现今轴带内的变质岩单元。碎屑金红石记录保留了碎屑锆石记录中缺失的事件证据。在比利牛斯山地区,这些包括大约。 100 Ma、200 Ma 和 220 Ma 裂谷事件与盘古大陆的分裂以及大西洋和比斯开湾的开放有关,以及 450-390 Ma 镁铁质金红石被解释为反映了瑞克洋的开放。碎屑锆石保留了与弧岩浆作用和造山作用相关的长英质岩浆作用的证据,这些证据在碎屑金红石年龄分布中大多不存在,包括大约300 Ma 瓦里斯坎岩浆作用,450-525 Ma 长英质近冈瓦南-卡多姆岩浆作用,以及 600-700 Ma 泛非造山运动。尽管碎屑金红石记录捕捉到了碎屑锆石所遗漏的大部分伊比利亚后瓦里西亚历史,但锆石或金红石 U-Pb 地质年代学和热年代学并未记录晚白垩世至中新世比利牛斯造山运动的特征,因为造山运动是非岩浆运动在此期间变质的任何岩石都没有被挖掘到地表。这两个互补的碎屑记录在一起比单独在一起更强大,并且一起可以检测大陆分裂和聚合的完整周期,其中碎屑金红石记录裂谷和海洋开放,而碎屑锆石对海洋关闭和碰撞敏感。本手稿受益于科学与 M. Roigé、A. Fildani、J. Clark、C. Puigdefàbregas、D. Barber 和 F. Galster 的讨论。我们感谢罗伯特·霍尔德(Robert Holder)、特雷莎·施瓦茨(Teresa Schwartz)和两位匿名审稿人的深思熟虑的评论,改进了这份手稿,并感谢安德鲁·巴特(Andrew Barth)的编辑处理。任何贸易、公司或产品名称的使用仅用于描述目的,并不意味着美国政府的认可。碎屑锆石保留了与弧岩浆作用和造山作用相关的长英质岩浆作用的证据,这些证据在碎屑金红石年龄分布中大多不存在,包括大约300 Ma 瓦里斯坎岩浆活动,450-525 Ma 长英质近冈瓦南-卡多姆岩浆活动,以及 600-700 Ma 泛非造山运动。尽管碎屑金红石记录捕捉到了碎屑锆石所遗漏的大部分伊比利亚后瓦里西亚历史,但锆石或金红石 U-Pb 地质和热年代学并未记录晚白垩世至中新世比利牛斯造山运动的特征,因为造山运动是非岩浆运动在此期间变质的任何岩石都没有被挖掘到地表。这两个互补的碎屑记录在一起比单独在一起更强大,并且一起可以检测大陆分裂和聚合的完整周期,其中碎屑金红石记录裂谷和海洋开放,而碎屑锆石对海洋关闭和碰撞敏感。本手稿受益于科学与 M. Roigé、A. Fildani、J. Clark、C. Puigdefàbregas、D. Barber 和 F. Galster 的讨论。我们感谢罗伯特·霍尔德(Robert Holder)、特雷莎·施瓦茨(Teresa Schwartz)和两位匿名审稿人的深思熟虑的评论,改进了这份手稿,并感谢安德鲁·巴特(Andrew Barth)的编辑处理。任何贸易、公司或产品名称的使用仅用于描述目的,并不意味着美国政府的认可。碎屑锆石保留了与弧岩浆作用和造山作用相关的长英质岩浆作用的证据,这些证据在碎屑金红石年龄分布中大多不存在,包括大约300 Ma 瓦里斯坎岩浆活动,450-525 Ma 长英质近冈瓦南-卡多姆岩浆活动,以及 600-700 Ma 泛非造山运动。尽管碎屑金红石记录捕捉到了碎屑锆石所遗漏的大部分伊比利亚后瓦里西亚历史,但锆石或金红石 U-Pb 地质和热年代学并未记录晚白垩世至中新世比利牛斯造山运动的特征,因为造山运动是非岩浆运动在此期间变质的任何岩石都没有被挖掘到地表。这两个互补的碎屑记录在一起比单独在一起更强大,并且一起可以检测大陆分裂和聚合的完整周期,其中碎屑金红石记录裂谷和海洋开放,而碎屑锆石对海洋关闭和碰撞敏感。本手稿受益于科学与 M. Roigé、A. Fildani、J. Clark、C. Puigdefàbregas、D. Barber 和 F. Galster 的讨论。我们感谢罗伯特·霍尔德(Robert Holder)、特雷莎·施瓦茨(Teresa Schwartz)和两位匿名审稿人的深思熟虑的评论,改进了这份手稿,并感谢安德鲁·巴特(Andrew Barth)的编辑处理。任何贸易、公司或产品名称的使用仅用于描述目的,并不意味着美国政府的认可。