当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic‐level Engineered Cobalt Catalysts for Fenton‐Like Reactions: Synergy of Single Atom Metal Sites and Nonmetal‐bonded Functionalities
Advanced Materials ( IF 29.4 ) Pub Date : 2024-04-30 , DOI: 10.1002/adma.202401454
Zhong‐Shuai Zhu 1 , Yantao Wang 1, 2 , Xiaoguang Duan 1 , Pengtang Wang 1 , Shuang Zhong 1 , Shiying Ren 1 , Xing Xu 3 , Baoyu Gao 3 , Jitraporn (Pimm) Vongsvivut 4 , Shaobin Wang 1
Affiliation  

Single atom catalysts (SACs) are atomic‐level‐engineered materials with high intrinsic activity. Catalytic centers of SACs are typically the transition metal (TM)‐nonmetal coordination sites, while the functions of co‐existing non‐TM‐bonded functionalities are usually overlooked in catalysis. Herein, we reported the scalable preparation of carbon‐supported cobalt‐anchored SACs (CoCN) with controlled Co−N sites and free functional N species. We first systematically study the role of metal and nonmetal bonded functionalities in the SACs for peroxymonosulfate (PMS)‐driven Fenton‐like reactions, revealing their contribution to performance improvement and pathway steering. Experiments and computations demonstrate that the Co−N3C coordination plays a vital role in the formation of a surface‐confined PMS* complex to trigger the electron transfer pathway and promote kinetics because of the optimized electronic state of Co centers, while the non‐metal‐coordinated graphitic N sites act as preferable pollutant adsorption sites and additional PMS activation sites to accelerate electron transfer. Synergistically, CoCN exhibits ultrahigh activity in PMS activation for p‐hydroxybenzoic acid oxidation, achieving complete degradation within 10 min with an ultrahigh turnover frequency of 0.38 min–1, surpassing most reported materials. These findings offer new insights into the versatile functions of N species in SACs and inspire rational design of high‐performance catalysts in complicated heterogeneous systems.This article is protected by copyright. All rights reserved

中文翻译:

用于类芬顿反应的原子级工程钴催化剂:单原子金属位点和非金属键合功能的协同作用

单原子催化剂(SAC)是具有高内在活性的原子级工程材料。 SAC的催化中心通常是过渡金属(TM)-非金属配位位点,而共存的非TM键合官能团的功能在催化中通常被忽视。在此,我们报道了具有受控 Co−N 位点和自由功能 N 物种的碳支撑钴锚定 SAC(CoCN)的可扩展制备。我们首先系统地研究了 SAC 中金属和非金属键合功能在过一硫酸盐 (PMS) 驱动的类芬顿反应中的作用,揭示了它们对性能改进和路径控制的贡献。实验和计算表明 Co−N3由于 Co 中心电子状态的优化,C 配位在表面限制 PMS* 复合物的形成中起着至关重要的作用,从而触发电子转移途径并促进动力学,而非金属配位的石墨 N 位点则充当优选的污染物吸附位点和额外的 PMS 激活位点可加速电子转移。协同作用下,CoCN 在对羟基苯甲酸氧化的 PMS 活化中表现出超高活性,在 10 分钟内实现完全降解,超高周转频率为 0.38 分钟–1,超过了大多数报道的材料。这些发现为SAC中氮物种的多功能功能提供了新的见解,并启发了复杂多相系统中高性能催化剂的合理设计。本文受版权保护。版权所有
更新日期:2024-04-30
down
wechat
bug