当前位置:
X-MOL 学术
›
Nano Energy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Integrated construction of stretchable supercapacitor with outstanding deformation stability and flame retardancy
Nano Energy ( IF 16.8 ) Pub Date : 2024-04-20 , DOI: 10.1016/j.nanoen.2024.109635 Hongchun Mu , Zekai Zhang , Wenqiang Wang , Cheng Lian , Gengchao Wang , Honglai Liu
Nano Energy ( IF 16.8 ) Pub Date : 2024-04-20 , DOI: 10.1016/j.nanoen.2024.109635 Hongchun Mu , Zekai Zhang , Wenqiang Wang , Cheng Lian , Gengchao Wang , Honglai Liu
The fast development of wearable electronics requires urgently stretchable energy storage devices, but conventional stretchable energy-storage devices suffer from poor dynamic deformation stability. The key is to create a new construction strategy of "electrode/electrolyte interface integration". Herein, we have proposed a clever strategy that combines layer-by-layer electrospinning with a self-selected vapor-phase polymerization (VPP) method to assemble the integrated stretchable supercapacitors (ISSCs). Furthermore, the interface stability enhancement mechanism is revealed through experimental and theoretical simulations, showing that the synergistic effect of molecular chain entanglement and mechanical meshing endows excellent anti-deformation stability of ISSCs. As a result, the as-assembled ISSCs deliver excellent dynamic deformation electrochemical stability with 99.5 % capacitance retention after 500 stretching cycles at strain and outstanding flame retardancy (limiting oxygen index (LOI) up to 48.1 % at a film thickness of only 0.22 mm). The innovative integrated design strategy endows a systematic construction plan for the scalable fabrication of wearable organic energy storage devices.
中文翻译:
可拉伸超级电容器一体化结构,具有出色的变形稳定性和阻燃性
可穿戴电子产品的快速发展迫切需要可拉伸储能器件,但传统的可拉伸储能器件动态变形稳定性较差。关键是打造“电极/电解质界面一体化”的新型建设策略。在此,我们提出了一种巧妙的策略,将逐层静电纺丝与自选气相聚合(VPP)方法相结合来组装集成可拉伸超级电容器(ISSC)。此外,通过实验和理论模拟揭示了界面稳定性增强机制,表明分子链缠结和机械啮合的协同效应赋予ISSCs优异的抗变形稳定性。因此,组装后的 ISSC 具有出色的动态变形电化学稳定性,在 500 次应变拉伸循环后电容保持率为 99.5%,并且具有出色的阻燃性(极限氧指数 (LOI) 在薄膜厚度仅为 0.22 mm 时高达 48.1%) 。创新的集成设计策略为可穿戴有机储能设备的可扩展制造提供了系统的构建计划。
更新日期:2024-04-20
中文翻译:
可拉伸超级电容器一体化结构,具有出色的变形稳定性和阻燃性
可穿戴电子产品的快速发展迫切需要可拉伸储能器件,但传统的可拉伸储能器件动态变形稳定性较差。关键是打造“电极/电解质界面一体化”的新型建设策略。在此,我们提出了一种巧妙的策略,将逐层静电纺丝与自选气相聚合(VPP)方法相结合来组装集成可拉伸超级电容器(ISSC)。此外,通过实验和理论模拟揭示了界面稳定性增强机制,表明分子链缠结和机械啮合的协同效应赋予ISSCs优异的抗变形稳定性。因此,组装后的 ISSC 具有出色的动态变形电化学稳定性,在 500 次应变拉伸循环后电容保持率为 99.5%,并且具有出色的阻燃性(极限氧指数 (LOI) 在薄膜厚度仅为 0.22 mm 时高达 48.1%) 。创新的集成设计策略为可穿戴有机储能设备的可扩展制造提供了系统的构建计划。