Nature Communications ( IF 14.7 ) Pub Date : 2024-04-29 , DOI: 10.1038/s41467-024-47968-0
Junlan Zeng 1 , Xiaoqiang Liu 1 , Zhaoyue Dong 2 , Fangyuan Zhang 1 , Fei Qiu 1 , Mingyu Zhong 1 , Tengfei Zhao 1 , Chunxian Yang 1 , Lingjiang Zeng 1 , Xiaozhong Lan 3 , Hongbo Zhang 4 , Junhui Zhou 5 , Min Chen 2 , Kexuan Tang 1, 6 , Zhihua Liao 1
|
Solanaceous plants produce tropane alkaloids (TAs) via esterification of 3α- and 3β-tropanol. Although littorine synthase is revealed to be responsible for 3α-tropanol esterification that leads to hyoscyamine biosynthesis, the genes associated with 3β-tropanol esterification are unknown. Here, we report that a BAHD acyltransferase from Atropa belladonna, 3β-tigloyloxytropane synthase (TS), catalyzes 3β-tropanol and tigloyl-CoA to form 3β-tigloyloxytropane, the key intermediate in calystegine biosynthesis and a potential drug for treating neurodegenerative disease. Unlike other cytosolic-localized BAHD acyltransferases, TS is localized to mitochondria. The catalytic mechanism of TS is revealed through molecular docking and site-directed mutagenesis. Subsequently, 3β-tigloyloxytropane is synthesized in tobacco. A bacterial CoA ligase (PcICS) is found to synthesize tigloyl-CoA, an acyl donor for 3β-tigloyloxytropane biosynthesis. By expressing TS mutant and PcICS, engineered Escherichia coli synthesizes 3β-tigloyloxytropane from tiglic acid and 3β-tropanol. This study helps to characterize the enzymology and chemodiversity of TAs and provides an approach for producing 3β-tigloyloxytropane.
中文翻译:

发现一种线粒体定位的 BAHD 酰基转移酶,该酶参与 Calystegine 生物合成并改造 3β-tigloyloxytropane 的生产
茄科植物通过 3 α - 和 3 β - 托醇的酯化作用产生托烷生物碱 (TA)。尽管表明littorine合酶负责导致天仙子胺生物合成的3α-托烷醇酯化,但与3β-托烷醇酯化相关的基因尚不清楚。在这里,我们报道了来自颠茄的BAHD 酰基转移酶,即 3 β -tigloyloxytropane 合酶 (TS),催化 3 β -tropanol 和 tigloyl-CoA 形成 3 β -tigloyloxytropane,3 β -tigloyloxytropane 是 clystegine 生物合成的关键中间体,也是治疗神经退行性疾病的潜在药物疾病。与其他胞质定位的 BAHD 酰基转移酶不同,TS 定位于线粒体。通过分子对接和定点突变揭示了TS的催化机制。随后,在烟草中合成了3β -tigloyloxytropane。细菌 CoA 连接酶 (PcICS) 被发现可合成替格酰辅酶 A,它是 3 β-替格酰氧基托烷生物合成的酰基供体。通过表达 TS 突变体和 PcICS,工程大肠杆菌可从替格罗酸和 3 β -托烷醇合成 3 β -替格酰氧基托烷。这项研究有助于表征 TA 的酶学和化学多样性,并提供生产 3 β -tigloyloxytropane 的方法。