当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Timescale correlation of shallow trap states increases electrochemiluminescence efficiency in carbon nitrides
Nature Communications ( IF 14.7 ) Pub Date : 2024-04-27 , DOI: 10.1038/s41467-024-48011-y
Yanfeng Fang 1 , Hong Yang 1 , Yuhua Hou 1 , Wang Li 1 , Yanfei Shen 2 , Songqin Liu 1 , Yuanjian Zhang 1, 3
Affiliation  

Highly efficient interconversion of different types of energy plays a crucial role in both science and technology. Among them, electrochemiluminescence, an emission of light excited by electrochemical reactions, has drawn attention as a powerful tool for bioassays. Nonetheless, the large differences in timescale among diverse charge-transfer pathways from picoseconds to seconds significantly limit the electrochemiluminescence efficiency and hamper their broad applications. Here, we report a timescale coordination strategy to improve the electrochemiluminescence efficiency of carbon nitrides by engineering shallow electron trap states via Au-N bond functionalization. Quantitative electrochemiluminescence kinetics measurements and theoretic calculations jointly disclose that Au-N bonds endow shallow electron trap states, which coordinate the timescale of the fast electron transfer in the bulk emitter and the slow redox reaction of co-reagent at diffusion layers. The shallow electron trap states ultimately accelerate the rate and kinetics of emissive electron-hole recombination, setting a new cathodic electrochemiluminescence efficiency record of carbon nitrides, and empowering a visual electrochemiluminescence sensor for nitrite ion, a typical environmental contaminant, with superior detection range and limit.



中文翻译:


浅陷阱态的时间尺度相关性提高了氮化碳的电化学发光效率



不同类型能源的高效相互转换在科学和技术中都起着至关重要的作用。其中,电化学发光是一种由电化学反应激发的光发射,作为生物测定的有力工具而受到关注。尽管如此,从皮秒到秒的不同电荷转移途径之间时间尺度的巨大差异显着限制了电化学发光效率并阻碍了它们的广泛应用。在这里,我们报告了一种时间尺度协调策略,通过 Au-N 键功能化设计浅电子陷阱态来提高氮化碳的电化学发光效率。定量电化学发光动力学测量和理论计算共同揭示了 Au-N 键赋予浅电子陷阱态,它协调了本体发射器中快速电子转移的时间尺度和扩散层中助试剂的缓慢氧化还原反应。浅电子陷阱态最终加快了发射电子-空穴复合的速率和动力学,创造了氮化碳阴极电化学发光效率的新纪录,并为亚硝酸盐离子(一种典型的环境污染物)的视觉电化学发光传感器提供了卓越的检测范围和限值。

更新日期:2024-04-28
down
wechat
bug