npj Quantum Materials ( IF 5.4 ) Pub Date : 2024-04-26 , DOI: 10.1038/s41535-024-00648-0 Benjamin Geisler , James J. Hamlin , Gregory R. Stewart , Richard G. Hennig , P. J. Hirschfeld
Motivated by the recent observation of superconductivity with Tc ~ 80 K in pressurized La3Ni2O71, we explore the structural and electronic properties of A3Ni2O7 bilayer nickelates (A = La-Lu, Y, Sc) as a function of pressure (0–150 GPa) from first principles including a Coulomb repulsion term. At ~ 20 GPa, we observe an orthorhombic-to-tetragonal transition in La3Ni2O7 at variance with x-ray diffraction data, which points to so-far unresolved complexities at the onset of superconductivity, e.g., charge doping by variations in the oxygen stoichiometry. We compile a structural phase diagram that establishes chemical and external pressure as distinct and counteracting control parameters. We find unexpected correlations between Tc and the in-plane Ni-O-Ni bond angles for La3Ni2O7. Moreover, two structural phases with significant c+ octahedral rotations and in-plane bond disproportionations are uncovered for A = Nd-Lu, Y, Sc that exhibit a pressure-driven electronic reconstruction in the Ni eg manifold. By disentangling the involvement of basal versus apical oxygen states at the Fermi surface, we identify Tb3Ni2O7 as an interesting candidate for superconductivity at ambient pressure. These results suggest a profound tunability of the structural and electronic phases in this novel materials class and are key for a fundamental understanding of the superconductivity mechanism.
中文翻译:
高压下A3Ni2O7稀土镍酸盐的结构转变、八面体旋转和电子特性
受最近在加压 La 3 Ni 2 O 7 1中观察到T c ~ 80 K超导性的启发,我们探索了A 3 Ni 2 O 7双层镍酸盐(A = La-Lu, Y, Sc)的结构和电子性质根据第一原理(包括库仑斥力项)作为压力 (0–150 GPa) 的函数。在约 20 GPa 的压力下,我们观察到 La 3 Ni 2 O 7中存在与 X 射线衍射数据不同的斜方晶系到四方晶系的转变,这表明超导性开始时迄今为止尚未解决的复杂性,例如,电荷掺杂的变化在氧化学计量中。我们编制了结构相图,将化学压力和外部压力确立为独特且相互抵消的控制参数。我们发现La 3 Ni 2 O 7的T c和面内Ni-O-Ni 键角之间存在意想不到的相关性。此外,对于A = Nd-Lu、Y、Sc,发现了具有显着c +八面体旋转和面内键歧化的两个结构相,它们在 Ni e g流形 中表现出压力驱动的电子重建。通过解开费米表面基础氧态与顶端氧态的关系,我们将 Tb 3 Ni 2 O 7确定为环境压力下超导性的一个有趣的候选者。这些结果表明这种新型材料中的结构相和电子相具有深刻的可调性,并且是基本理解超导机制的关键。