Nature Reviews Materials ( IF 79.8 ) Pub Date : 2024-04-26 , DOI: 10.1038/s41578-024-00671-4 Pratap Chandra Adak , Subhajit Sinha , Amit Agarwal , Mandar M. Deshmukh
Berry curvature physics and quantum geometric effects have been instrumental in advancing topological condensed matter physics in recent decades. Although Landau level-based flat bands and conventional 3D solids have been pivotal in exploring rich topological phenomena, they are constrained by their limited ability to undergo dynamic tuning. By stark contrast, moiré systems have risen as a versatile platform for engineering bands and manipulating the distribution of Berry curvature in momentum space. These moiré systems not only harbour tunable topological bands, modifiable through a plethora of parameters, but also provide unprecedented access to large length scales and low energy scales. Furthermore, they offer unique opportunities stemming from the symmetry-breaking mechanisms and electron correlations associated with the underlying flat bands that are beyond the reach of conventional crystalline solids. A diverse array of tools, encompassing quantum electron transport in both linear and nonlinear response regimes and optical excitation techniques, provide direct avenues for investigating Berry physics in these materials. This Review navigates the evolving landscape of tunable moiré materials, highlighting recent experimental breakthroughs in the field of topological physics. Additionally, we delineate the most pressing challenges and offer insights into promising avenues for future research.
中文翻译:
用于探测 Berry 物理和拓扑的可调莫尔材料
近几十年来,贝里曲率物理学和量子几何效应在推动拓扑凝聚态物理学方面发挥了重要作用。尽管基于朗道能级的平带和传统的 3D 实体在探索丰富的拓扑现象方面发挥了关键作用,但它们受到动态调谐能力有限的限制。与此形成鲜明对比的是,摩尔纹系统已成为工程频带和操纵动量空间中贝里曲率分布的多功能平台。这些莫尔系统不仅具有可调谐拓扑带,可通过大量参数进行修改,而且还提供了前所未有的大长度尺度和低能量尺度的途径。此外,它们还提供了独特的机会,这些机会源于与底层平带相关的对称性破缺机制和电子相关性,这是传统晶体固体无法达到的。一系列不同的工具,包括线性和非线性响应机制中的量子电子传输以及光学激发技术,为研究这些材料中的贝里物理提供了直接途径。这篇综述探讨了可调莫尔材料不断发展的前景,重点介绍了拓扑物理领域最近的实验突破。此外,我们还描述了最紧迫的挑战,并为未来研究的有希望的途径提供了见解。