Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Continuous Flow Electrochemical Synthesis of Olivine-Structured NaFePO4 Cathode Material for Sodium-Ion Batteries from Recycle LiFePO4
Small ( IF 13.0 ) Pub Date : 2024-04-25 , DOI: 10.1002/smll.202401489 Tongtong Gan 1, 2, 3 , Jiashu Yuan 2, 3 , Fang Chen 2 , Guodong Zhang 3 , Laihao Liu 2, 3 , Li Zhou 4 , Yunfang Gao 1 , Yonggao Xia 3, 5
Small ( IF 13.0 ) Pub Date : 2024-04-25 , DOI: 10.1002/smll.202401489 Tongtong Gan 1, 2, 3 , Jiashu Yuan 2, 3 , Fang Chen 2 , Guodong Zhang 3 , Laihao Liu 2, 3 , Li Zhou 4 , Yunfang Gao 1 , Yonggao Xia 3, 5
Affiliation
To mitigate the environmental impact of the improper disposal of spent LiFePO4 batteries and reduce resource waste, the development of LiFePO4 recycling technologies is of paramount importance. Meanwhile, olivine-structured NaFePO4 in sodium-ion batteries has received great attention, due to its high theoretical specific capacity of 154 mAh g−1 and excellent stability. However, olivine NaFePO4 only can be synthesized from olivine LiFePO4. Accordingly, in this proposal, developing the continuous flow electrochemical solid-liquid reactor-based metal ion insertion technology is to utilize the olivine FePO4, recycled from LiFePO4, and to synthesize NaFePO4. Additionally, by employing I− as the reducing agent, NaFePO4 is successfully synthesized with a discharge-specific capacity of 134 mAh g−1 at 0.1C and a remarkable capacity retention rate of 86.5% after 100 cycles at 0.2C. And the reasons for sodium deficiency in the synthesized NFP are elucidated through first-principles calculations. Furthermore, the kinetics of the solid-solution reaction 2 (Na2/3+βPO4→ Na1-αFePO4) mechanism improve with cycling and are sensitive to temperature. Utilizing a minimal amount of reducing agent in the electrochemical reactor, NaFePO4 synthesis is successfully achieved. This innovative approach offers a new, cost-effective, and environmentally friendly strategy for preparing NaFePO4 from recycling LiFePO4.
中文翻译:
回收LiFePO4连续流电化学合成钠离子电池橄榄石结构NaFePO4正极材料
为了减轻废旧LiFePO 4电池不当处置对环境的影响并减少资源浪费,LiFePO 4回收技术的发展至关重要。同时,橄榄石结构的NaFePO 4由于其154 mAh g -1的高理论比容量和优异的稳定性而在钠离子电池中受到了极大的关注。然而,橄榄石NaFePO 4只能由橄榄石LiFePO 4合成。因此,在本提案中,开发基于连续流电化学固液反应器的金属离子插入技术是利用从LiFePO 4回收的橄榄石FePO 4来合成NaFePO 4 。此外,通过使用I -作为还原剂,成功合成了NaFePO 4 ,其在0.1C下的放电比容量为134mAh g -1 ,并且在0.2C下100次循环后容量保持率为86.5%。并通过第一性原理计算阐明了合成的NFP中缺钠的原因。此外,固溶反应2(Na 2/3+β PO 4 → Na 1-α FePO 4 )机制的动力学随着循环而改善,并且对温度敏感。在电化学反应器中使用最少量的还原剂,成功地实现了NaFePO 4 的合成。这种创新方法为从回收的LiFePO 4中制备NaFePO 4提供了一种新的、具有成本效益且环保的策略。
更新日期:2024-04-25
中文翻译:
回收LiFePO4连续流电化学合成钠离子电池橄榄石结构NaFePO4正极材料
为了减轻废旧LiFePO 4电池不当处置对环境的影响并减少资源浪费,LiFePO 4回收技术的发展至关重要。同时,橄榄石结构的NaFePO 4由于其154 mAh g -1的高理论比容量和优异的稳定性而在钠离子电池中受到了极大的关注。然而,橄榄石NaFePO 4只能由橄榄石LiFePO 4合成。因此,在本提案中,开发基于连续流电化学固液反应器的金属离子插入技术是利用从LiFePO 4回收的橄榄石FePO 4来合成NaFePO 4 。此外,通过使用I -作为还原剂,成功合成了NaFePO 4 ,其在0.1C下的放电比容量为134mAh g -1 ,并且在0.2C下100次循环后容量保持率为86.5%。并通过第一性原理计算阐明了合成的NFP中缺钠的原因。此外,固溶反应2(Na 2/3+β PO 4 → Na 1-α FePO 4 )机制的动力学随着循环而改善,并且对温度敏感。在电化学反应器中使用最少量的还原剂,成功地实现了NaFePO 4 的合成。这种创新方法为从回收的LiFePO 4中制备NaFePO 4提供了一种新的、具有成本效益且环保的策略。