Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mechanism of Interfacial Molecular Interactions Reveals the Intrinsic Factors for the Highly Enhanced Sensing Performance of Ag-Loaded Co3O4
ACS Sensors ( IF 8.2 ) Pub Date : 2024-04-25 , DOI: 10.1021/acssensors.4c00277
Zhengmao Cao 1 , Yanjuan Sun 2 , Fan Dong 1
ACS Sensors ( IF 8.2 ) Pub Date : 2024-04-25 , DOI: 10.1021/acssensors.4c00277
Zhengmao Cao 1 , Yanjuan Sun 2 , Fan Dong 1
Affiliation
![]() |
The noble metal-loaded strategy can effectively improve the gas-sensing performances of metal oxide sensors. However, the gas–solid interfacial interactions between noble metal-loaded sensing materials and gaseous species remain unclear, posing a significant challenge in correlating the physical and chemical processes during gas sensing. In this study, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and in situ Raman spectroscopy were conducted to collaboratively investigate the interfacial interactions involved in the ethanol gas-sensing processes over Co3O4 and Ag-loaded Co3O4 sensors. In situ DRIFTS revealed differences in the compositions and quantities of sensing reaction products, as well as in the adsorption–desorption interactions of surface species, among Co3O4 and Ag-loaded Co3O4 materials. In parallel, in situ Raman spectroscopy demonstrated that the ethanol atmosphere can modulate the electron scattering of Ag-loaded Co3O4 materials but not of raw Co3O4. In situ experimental results revealed the intrinsic reason for the highly enhanced sensing performances of the Ag-loaded Co3O4 sensors toward ethanol gas, including a decreased optimal working temperature (from 250 to 150 °C), an improved gas response level (from 24 to 257), and accelerated gas recovery dynamics. This work provides an effective platform to investigate the interfacial interactions of sensing processes at the molecular level and further advances the development of high-performance gas sensors.
中文翻译:
界面分子相互作用机制揭示了载银Co3O4传感性能高度增强的内在因素
贵金属负载策略可以有效提高金属氧化物传感器的气敏性能。然而,贵金属负载传感材料和气态物质之间的气固界面相互作用仍不清楚,这对气体传感过程中物理和化学过程的关联提出了重大挑战。在这项研究中,采用原位漫反射红外傅里叶变换光谱(DRIFTS)和原位拉曼光谱来合作研究Co 3 O 4和载银Co 3 O 4传感器上乙醇气体传感过程中涉及的界面相互作用。 。原位漂移揭示了 Co 3 O 4和载银 Co 3 O 4材料之间传感反应产物的组成和数量以及表面物质的吸附-解吸相互作用的差异。同时,原位拉曼光谱表明乙醇气氛可以调节载银Co 3 O 4材料的电子散射,但不能调节原料Co 3 O 4的电子散射。原位实验结果揭示了载银Co 3 O 4传感器对乙醇气体传感性能大幅增强的内在原因,包括最佳工作温度降低(从250℃到150℃)、气体响应水平提高(从24 至 257),并加速气体回收动态。 这项工作为在分子水平上研究传感过程的界面相互作用提供了一个有效的平台,并进一步推动了高性能气体传感器的发展。
更新日期:2024-04-25
中文翻译:

界面分子相互作用机制揭示了载银Co3O4传感性能高度增强的内在因素
贵金属负载策略可以有效提高金属氧化物传感器的气敏性能。然而,贵金属负载传感材料和气态物质之间的气固界面相互作用仍不清楚,这对气体传感过程中物理和化学过程的关联提出了重大挑战。在这项研究中,采用原位漫反射红外傅里叶变换光谱(DRIFTS)和原位拉曼光谱来合作研究Co 3 O 4和载银Co 3 O 4传感器上乙醇气体传感过程中涉及的界面相互作用。 。原位漂移揭示了 Co 3 O 4和载银 Co 3 O 4材料之间传感反应产物的组成和数量以及表面物质的吸附-解吸相互作用的差异。同时,原位拉曼光谱表明乙醇气氛可以调节载银Co 3 O 4材料的电子散射,但不能调节原料Co 3 O 4的电子散射。原位实验结果揭示了载银Co 3 O 4传感器对乙醇气体传感性能大幅增强的内在原因,包括最佳工作温度降低(从250℃到150℃)、气体响应水平提高(从24 至 257),并加速气体回收动态。 这项工作为在分子水平上研究传感过程的界面相互作用提供了一个有效的平台,并进一步推动了高性能气体传感器的发展。