当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Precisely Assembling a CoO Cocatalyst onto Tb4O7/CN and Pt-Tb4O7/CN for Promoting Photocatalytic Overall Water Splitting
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-04-23 , DOI: 10.1021/acs.inorgchem.4c00849 Dedong Zeng 1 , Yuexiang Li 1
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2024-04-23 , DOI: 10.1021/acs.inorgchem.4c00849 Dedong Zeng 1 , Yuexiang Li 1
Affiliation
Photocatalytic overall water splitting (POWS) is a promising approach for solar-to-hydrogen conversion. For achieving this target, it is urgent to develop efficient photocatalysts. Constructing a heterojunction and loading a cocatalyst are two effective strategies for enhancing POWS. However, how to achieve the cooperation of loading the cocatalyst site with the charge separation of a heterojunction remains a huge challenge. Herein, we present an ingenious method: precisely assembling a H2O2-producing cocatalyst CoO on Tb4O7/CN. Assembling CoO on CN of Tb4O7/CN improves the photoinduced electron–hole pair separation and promotes the POWS performance. Inversely, engineering CoO on Tb4O7 leads to production of Co, deactivating POWS performance with a H2-evolution rate 5.2 times lower than that of Tb4O7/CN. Furthermore, we precisely assemble CoO on the CN section of Pt-oriented Pt-Tb4O7/CN. The bioriented CoO and Pt cooperatively promote photogenerated carrier separation. Consequently, the prepared Pt-Tb4O7/CN-CoO exhibits spectacularly high POWS activity. The H2-evolution rate reaches 450 μmol h–1 g–1, which is about 9.4 times higher than that of the initial Tb4O7/CN. The apparent quantum yield (AQY) for H2 evolution at 420 nm reaches 14.1%, surpassing those of most reported CN-based photocatalysts. This work offers an approach to precisely load cocatalysts on heterojunctions. These findings provide insights for designing cocatalyst-decorated heterojunctions for POWS.
中文翻译:
将 CoO 助催化剂精确组装到 Tb4O7/CN 和 Pt-Tb4O7/CN 上以促进光催化整体水分解
光催化全水分解(POWS)是一种很有前途的太阳能转化为氢气的方法。为了实现这一目标,迫切需要开发高效的光催化剂。构建异质结和负载助催化剂是增强 POWS 的两种有效策略。然而,如何实现负载助催化剂位点与异质结电荷分离的配合仍然是一个巨大的挑战。在此,我们提出了一种巧妙的方法:在Tb 4 O 7 /CN上精确组装产生H 2 O 2的助催化剂CoO。在Tb 4 O 7 /CN的CN上组装CoO改善了光致电子-空穴对分离并提高了POWS性能。相反,在Tb 4 O 7上工程化CoO会导致Co的产生,从而使POWS性能失活,且H 2释放速率比Tb 4 O 7 /CN低5.2倍。此外,我们在Pt取向的Pt-Tb 4 O 7 /CN的CN部分上精确组装了CoO。双取向CoO和Pt协同促进光生载流子分离。因此,制备的Pt-Tb 4 O 7 /CN-CoO表现出极高的POWS活性。 H 2析出速率达到450 μmol h –1 g –1 ,比初始Tb 4 O 7 /CN高约9.4倍。在420 nm处H 2析出的表观量子产率(AQY)达到14.1%,超过了大多数报道的CN基光催化剂。这项工作提供了一种在异质结上精确负载助催化剂的方法。 这些发现为设计用于 POWS 的助催化剂修饰异质结提供了见解。
更新日期:2024-04-23
中文翻译:
将 CoO 助催化剂精确组装到 Tb4O7/CN 和 Pt-Tb4O7/CN 上以促进光催化整体水分解
光催化全水分解(POWS)是一种很有前途的太阳能转化为氢气的方法。为了实现这一目标,迫切需要开发高效的光催化剂。构建异质结和负载助催化剂是增强 POWS 的两种有效策略。然而,如何实现负载助催化剂位点与异质结电荷分离的配合仍然是一个巨大的挑战。在此,我们提出了一种巧妙的方法:在Tb 4 O 7 /CN上精确组装产生H 2 O 2的助催化剂CoO。在Tb 4 O 7 /CN的CN上组装CoO改善了光致电子-空穴对分离并提高了POWS性能。相反,在Tb 4 O 7上工程化CoO会导致Co的产生,从而使POWS性能失活,且H 2释放速率比Tb 4 O 7 /CN低5.2倍。此外,我们在Pt取向的Pt-Tb 4 O 7 /CN的CN部分上精确组装了CoO。双取向CoO和Pt协同促进光生载流子分离。因此,制备的Pt-Tb 4 O 7 /CN-CoO表现出极高的POWS活性。 H 2析出速率达到450 μmol h –1 g –1 ,比初始Tb 4 O 7 /CN高约9.4倍。在420 nm处H 2析出的表观量子产率(AQY)达到14.1%,超过了大多数报道的CN基光催化剂。这项工作提供了一种在异质结上精确负载助催化剂的方法。 这些发现为设计用于 POWS 的助催化剂修饰异质结提供了见解。