当前位置: X-MOL 学术Opt. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reservoir computing for a MEMS mirror-based laser beam control on FPGA
Optical Review ( IF 1.1 ) Pub Date : 2024-04-24 , DOI: 10.1007/s10043-024-00871-x
Yuan Wang , Keisuke Uchida , Munenori Takumi , Katsuhiro Ishii , Ken-ichi Kitayama

In this paper, a small-world network-based reservoir computing (SWN-RC) is introduced to a micro-electromechanical system (MEMS) mirror-based laser scanner to achieve high-accuracy and low-delay laser trajectory control. The benefits of SWN-RC are confirmed through a comprehensive simulation, comparing it with reservoir computing (RC) based on regular and random networks. Subsequently, the RC control module is designed and implemented on a cost-optimized field-programmable gate array (FPGA). To balance the resource consumption and the processing delay, we use a half-parallel architecture for the large-scale matrix multiplications. In addition, the weight matrices of the RC are expressed by the 12-bit fixed-point data, which sufficiently suppresses the quantization noise. Furthermore, we simplify the activation function as a piecewise linear function and store the values in the read-only memory (ROM), resulting in a 76.6% reduction in ROM utilization. Finally, the SWN-RC, regular-RC, and random-RC control modules are implemented on the FPGA board and experimentally tested in the MEMS mirror-based laser scanner system. To the authors’ knowledge, it is the first reported RC-based MEMS mirror control system implemented on FPGA. In addition, the PID control is also tested as a baseline experiment. The results indicate that the RC control greatly outperforms the PID control with a 57.18% reduction in delay and over a 58.83% reduction in root mean square error (RMSE). Among the RC controls, the SWN-RC exhibits the best performance than the others. The SWN-RC achieves a further 14.03% and 12.42% reduction in RMSE compared to regular-RC and random-RC, respectively.



中文翻译:

FPGA 上基于 MEMS 镜的激光束控制的储层计算

本文将基于小世界网络的油藏计算(SWN-RC)引入到基于微机电系统(MEMS)镜面的激光扫描仪中,以实现高精度、低延迟的激光轨迹控制。 SWN-RC 的优点通过全面的模拟得到了证实,并将其与基于规则和随机网络的储层计算(RC)进行了比较。随后,在成本优化的现场可编程门阵列(FPGA)上设计并实现了 RC 控制模块。为了平衡资源消耗和处理延迟,我们使用半并行架构来进行大规模矩阵乘法。另外,RC的权重矩阵由12位定点数据表示,充分抑制了量化噪声。此外,我们将激活函数简化为分段线性函数,并将值存储在只读存储器(ROM)中,从而使 ROM 利用率降低 76.6%。最后,在 FPGA 板上实现了 SWN-RC、规则 RC 和随机 RC 控制模块,并在基于 MEMS 镜面的激光扫描仪系统中进行了实验测试。据作者所知,这是第一个报道的在 FPGA 上实现的基于 RC 的 MEMS 镜控制系统。此外,还对PID控制作为基线实验进行了测试。结果表明,RC 控制大大优于 PID 控制,延迟降低了 57.18%,均方根误差 (RMSE) 降低了 58.83%。在 RC 控件中,SWN-RC 的性能优于其他控件。与常规 RC 和随机 RC 相比,SWN-RC 的 RMSE 分别进一步降低了 14.03% 和 12.42%。

更新日期:2024-04-24
down
wechat
bug