当前位置:
X-MOL 学术
›
IEEE Trans. Med. Imaging
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
3DTINC: Time-Equivariant Non-Contrastive Learning for Predicting Disease Progression From Longitudinal OCTs
IEEE Transactions on Medical Imaging ( IF 8.9 ) Pub Date : 2024-04-24 , DOI: 10.1109/tmi.2024.3391215 Taha Emre 1 , Arunava Chakravarty 1 , Antoine Rivail 1 , Dmitrii Lachinov 1 , Oliver Leingang 1 , Sophie Riedl 1 , Julia Mai 1 , Hendrik P.N. Scholl 2 , Sobha Sivaprasad 3 , Daniel Rueckert 4 , Andrew Lotery 5 , Ursula Schmidt-Erfurth 1 , Hrvoje Bogunović 1
IEEE Transactions on Medical Imaging ( IF 8.9 ) Pub Date : 2024-04-24 , DOI: 10.1109/tmi.2024.3391215 Taha Emre 1 , Arunava Chakravarty 1 , Antoine Rivail 1 , Dmitrii Lachinov 1 , Oliver Leingang 1 , Sophie Riedl 1 , Julia Mai 1 , Hendrik P.N. Scholl 2 , Sobha Sivaprasad 3 , Daniel Rueckert 4 , Andrew Lotery 5 , Ursula Schmidt-Erfurth 1 , Hrvoje Bogunović 1
Affiliation
Self-supervised learning (SSL) has emerged as a powerful technique for improving the efficiency and effectiveness of deep learning models. Contrastive methods are a prominent family of SSL that extract similar representations of two augmented views of an image while pushing away others in the representation space as negatives. However, the state-of-the-art contrastive methods require large batch sizes and augmentations designed for natural images that are impractical for 3D medical images. To address these limitations, we propose a new longitudinal SSL method, 3DTINC, based on non-contrastive learning. It is designed to learn perturbation-invariant features for 3D optical coherence tomography (OCT) volumes, using augmentations specifically designed for OCT. We introduce a new non-contrastive similarity loss term that learns temporal information implicitly from intra-patient scans acquired at different times. Our experiments show that this temporal information is crucial for predicting progression of retinal diseases, such as age-related macular degeneration (AMD). After pretraining with 3DTINC, we evaluated the learned representations and the prognostic models on two large-scale longitudinal datasets of retinal OCTs where we predict the conversion to wet-AMD within a six-month interval. Our results demonstrate that each component of our contributions is crucial for learning meaningful representations useful in predicting disease progression from longitudinal volumetric scans.
中文翻译:
3DTINC:用于从纵向 OCT 预测疾病进展的时间等变非对比学习
自监督学习 (SSL) 已成为提高深度学习模型效率和有效性的强大技术。对比方法是一个突出的 SSL 系列,它提取图像的两个增强视图的相似表示,同时将表示空间中的其他视图作为负片推开。然而,最先进的对比方法需要大批量和增强,这些增强是为自然图像设计的,这对于 3D 医学图像来说是不切实际的。为了解决这些限制,我们提出了一种基于非对比学习的新纵向 SSL 方法 3DTINC。它旨在使用专为 OCT 设计的增强来学习 3D 光学相干断层扫描 (OCT) 体积的扰动不变特征。我们引入了一个新的非对比相似性损失项,它从不同时间获取的患者内部扫描中隐式学习时间信息。我们的实验表明,这种时间信息对于预测视网膜疾病的进展至关重要,例如年龄相关性黄斑变性 (AMD)。在使用 3DTINC 进行预训练后,我们在视网膜 OCT 的两个大规模纵向数据集上评估了学习的表示和预后模型,我们预测了在六个月间隔内转化为湿性 AMD。我们的结果表明,我们贡献的每个组成部分对于学习有用的有意义的表示都至关重要,这些表示有助于从纵向体积扫描中预测疾病进展。
更新日期:2024-04-24
中文翻译:
3DTINC:用于从纵向 OCT 预测疾病进展的时间等变非对比学习
自监督学习 (SSL) 已成为提高深度学习模型效率和有效性的强大技术。对比方法是一个突出的 SSL 系列,它提取图像的两个增强视图的相似表示,同时将表示空间中的其他视图作为负片推开。然而,最先进的对比方法需要大批量和增强,这些增强是为自然图像设计的,这对于 3D 医学图像来说是不切实际的。为了解决这些限制,我们提出了一种基于非对比学习的新纵向 SSL 方法 3DTINC。它旨在使用专为 OCT 设计的增强来学习 3D 光学相干断层扫描 (OCT) 体积的扰动不变特征。我们引入了一个新的非对比相似性损失项,它从不同时间获取的患者内部扫描中隐式学习时间信息。我们的实验表明,这种时间信息对于预测视网膜疾病的进展至关重要,例如年龄相关性黄斑变性 (AMD)。在使用 3DTINC 进行预训练后,我们在视网膜 OCT 的两个大规模纵向数据集上评估了学习的表示和预后模型,我们预测了在六个月间隔内转化为湿性 AMD。我们的结果表明,我们贡献的每个组成部分对于学习有用的有意义的表示都至关重要,这些表示有助于从纵向体积扫描中预测疾病进展。