Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
3D-Continuous Nanoporous Covalent Framework Membrane Nanoreactors with Quantitatively Loaded Ultrafine Pd Nanocatalysts
Small ( IF 13.0 ) Pub Date : 2024-04-23 , DOI: 10.1002/smll.202309490 Dawoon Jeong 1 , Wangsuk Oh 1 , Ji-Woong Park 1
Small ( IF 13.0 ) Pub Date : 2024-04-23 , DOI: 10.1002/smll.202309490 Dawoon Jeong 1 , Wangsuk Oh 1 , Ji-Woong Park 1
Affiliation
The confinement effect of catalytic nanoreactors containing metal catalysts within nanometer-sized volumes has attracted significant attention for their potential to enhance reaction rate and selectivity. Nevertheless, unregulated catalyst loading, aggregation, leaching, and limited reusability remain obstacles to achieving an efficient nanoreactor. A robust and durable catalytic membrane nanoreactor prepared by incorporating palladium nanocatalysts within a 3D-continuous nanoporous covalent framework membrane is presented. The reduction of palladium precursor occurs on the pore surface within 3D nanochannels, producing ultrafine palladium nanoparticles (Pd NPs) with their number density adjustable by varying metal precursor concentrations. The precise catalyst loading enables controlling the catalytic activity of the reactor while preventing excess metal usage. The facile preparation of Pd NP-loaded free-standing membrane materials allows hydrodechlorination in both batch and continuous flow modes. In batch mode, the catalytic activity is proportional to the loaded Pd amount and membrane area, while the membrane retains its activity upon repeated use. In continuous mode, the conversion remains above 95% for over 100 h, with the reactant solution passing through a single 50 µm-thick Pd-loaded membrane. The efficient nanoporous film-type catalytic nanoreactor may find applications in catalytic reactions for small chemical devices as well as in conventional chemistry and processes.
中文翻译:
定量负载超细 Pd 纳米催化剂的 3D 连续纳米孔共价框架膜纳米反应器
纳米尺寸体积内含有金属催化剂的催化纳米反应器的限域效应因其提高反应速率和选择性的潜力而引起了人们的广泛关注。然而,不受控制的催化剂负载、聚集、浸出和有限的可重复使用性仍然是实现高效纳米反应器的障碍。提出了一种通过将钯纳米催化剂掺入 3D 连续纳米孔共价框架膜中而制备的坚固耐用的催化膜纳米反应器。钯前体的还原发生在 3D 纳米通道内的孔表面,产生超细钯纳米颗粒 (Pd NP),其数量密度可通过改变金属前体浓度进行调节。精确的催化剂负载量能够控制反应器的催化活性,同时防止过量的金属使用。负载 Pd NP 的独立式膜材料的简便制备允许以间歇和连续流动模式进行加氢脱氯。在批量模式下,催化活性与负载的 Pd 量和膜面积成正比,而膜在重复使用后仍保持其活性。在连续模式下,反应物溶液通过单个 50 µm 厚的负载 Pd 的膜时,转化率在 100 小时内保持在 95% 以上。高效的纳米孔薄膜型催化纳米反应器可应用于小型化学装置的催化反应以及传统化学和工艺。
更新日期:2024-04-23
中文翻译:
定量负载超细 Pd 纳米催化剂的 3D 连续纳米孔共价框架膜纳米反应器
纳米尺寸体积内含有金属催化剂的催化纳米反应器的限域效应因其提高反应速率和选择性的潜力而引起了人们的广泛关注。然而,不受控制的催化剂负载、聚集、浸出和有限的可重复使用性仍然是实现高效纳米反应器的障碍。提出了一种通过将钯纳米催化剂掺入 3D 连续纳米孔共价框架膜中而制备的坚固耐用的催化膜纳米反应器。钯前体的还原发生在 3D 纳米通道内的孔表面,产生超细钯纳米颗粒 (Pd NP),其数量密度可通过改变金属前体浓度进行调节。精确的催化剂负载量能够控制反应器的催化活性,同时防止过量的金属使用。负载 Pd NP 的独立式膜材料的简便制备允许以间歇和连续流动模式进行加氢脱氯。在批量模式下,催化活性与负载的 Pd 量和膜面积成正比,而膜在重复使用后仍保持其活性。在连续模式下,反应物溶液通过单个 50 µm 厚的负载 Pd 的膜时,转化率在 100 小时内保持在 95% 以上。高效的纳米孔薄膜型催化纳米反应器可应用于小型化学装置的催化反应以及传统化学和工艺。