当前位置: X-MOL 学术Nat. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Catalytic role of in-situ formed C-N species for enhanced Li2CO3 decomposition
Nature Communications ( IF 14.7 ) Pub Date : 2024-04-22 , DOI: 10.1038/s41467-024-47629-2
Fangli Zhang 1, 2, 3 , Wenchao Zhang 1, 4 , Jodie A Yuwono 2 , David Wexler 3 , Yameng Fan 3 , Jinshuo Zou 2 , Gemeng Liang 2 , Liang Sun 2 , Zaiping Guo 2
Affiliation  

Sluggish kinetics of the CO2 reduction/evolution reactions lead to the accumulation of Li2CO3 residuals and thus possible catalyst deactivation, which hinders the long-term cycling stability of Li-CO2 batteries. Apart from catalyst design, constructing a fluorinated solid-electrolyte interphase is a conventional strategy to minimize parasitic reactions and prolong cycle life. However, the catalytic effects of solid-electrolyte interphase components have been overlooked and remain unclear. Herein, we systematically regulate the compositions of solid-electrolyte interphase via tuning electrolyte solvation structures, anion coordination, and binding free energy between Li ion and anion. The cells exhibit distinct improvement in cycling performance with increasing content of C-N species in solid-electrolyte interphase layers. The enhancement originates from a catalytic effect towards accelerating the Li2CO3 formation/decomposition kinetics. Theoretical analysis reveals that C-N species provide strong adsorption sites and promote charge transfer from interface to *CO22− during discharge, and from Li2CO3 to C-N species during charge, thereby building a bidirectional fast-reacting bridge for CO2 reduction/evolution reactions. This finding enables us to design a C-N rich solid-electrolyte interphase via dual-salt electrolytes, improving cycle life of Li-CO2 batteries to twice that using traditional electrolytes. Our work provides an insight into interfacial design by tuning of catalytic properties towards CO2 reduction/evolution reactions.



中文翻译:


原位形成的 CN 物种对增强 Li2CO3 分解的催化作用



CO 2还原/放出反应的缓慢动力学导致Li 2 CO 3残留物的积累,从而可能导致催化剂失活,这阻碍了Li-CO 2电池的长期循环稳定性。除了催化剂设计之外,构建氟化固体电解质界面是最小化寄生反应和延长循环寿命的传统策略。然而,固体电解质界面成分的催化作用被忽视并且仍不清楚。在此,我们通过调节电解质溶剂化结构、阴离子配位以及锂离子与阴离子之间的结合自由能来系统地调节固体电解质界面的组成。随着固体电解质中间层中 CN 物质含量的增加,电池表现出循环性能的显着改善。该增强源于加速Li 2 CO 3形成/分解动力学的催化作用。理论分析表明,CN物种提供了强大的吸附位点,并在放电过程中促进电荷从界面转移到*CO 2 2− ,以及在充电过程中从Li 2 CO 3到CN物种,从而构建了CO 2还原/的双向快速反应桥。进化反应。这一发现使我们能够通过双盐电解质设计富含 CN 的固体电解质界面,将 Li-CO 2电池的循环寿命提高到使用传统电解质的两倍。我们的工作通过调整 CO 2还原/演化反应的催化性能,为界面设计提供了深入的见解。

更新日期:2024-04-22
down
wechat
bug