当前位置: X-MOL 学术Chem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)

机器学习引导的 pallada 电催化环化反应产率优化

Chem ( IF 19.1 ) Pub Date : 2024-04-19 , DOI: 10.1016/j.chempr.2024.03.027
Xiaoyan Hou , Shuwen Li , Johanna Frey , Xin Hong , Lutz Ackermann


电合成已成为现代有机化学中日益流行的平台,具有独特的特征和反应参数,如施加电流/电位、电极、电解质系统和电池设计。虽然这些独特的功能为化学家提供了更多控制反应性和选择性的机会,但它们也增加了反应的维度并使变量之间的相互作用复杂化,使优化更具挑战性。在此,我们提出了一种机器学习(ML)工作流程,利用基于物理有机描述符的产量预测和正交实验设计,在采样多样性的需求和追求产量提高之间取得微妙的平衡,从而有效地确定对映选择性钯电的理想条件-从广泛的合成空间催化成环。这项工作展示了有机电化学和数据驱动方法协同解决多维化学优化问题的潜力。





"点击查看英文标题和摘要"

更新日期:2024-04-19
down
wechat
bug