当前位置:
X-MOL 学术
›
Annu. Rev. Astron. Astrophys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dust Growth and Evolution in Protoplanetary Disks
Annual Review of Astronomy and Astrophysics ( IF 26.3 ) Pub Date : 2024-04-19 , DOI: 10.1146/annurev-astro-071221-052705 Tilman Birnstiel 1, 2
Annual Review of Astronomy and Astrophysics ( IF 26.3 ) Pub Date : 2024-04-19 , DOI: 10.1146/annurev-astro-071221-052705 Tilman Birnstiel 1, 2
Affiliation
Over the past decade, advancement of observational capabilities, specifically the Atacama Large Millimeter/submillimeter Array (ALMA) and Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instruments, alongside theoretical innovations like pebble accretion, have reshaped our understanding of planet formation and the physics of protoplanetary disks. Despite this progress, mysteries persist along the winded path of micrometer-sized dust, from the interstellar medium, through transport and growth in the protoplanetary disk, to becoming gravitationally bound bodies. This review outlines our current knowledge of dust evolution in circumstellar disks, yielding the following insights: ▪ Theoretical and laboratory studies have accurately predicted the growth of dust particles to sizes that are susceptible to accumulation through transport processes like radial drift and settling. ▪ Critical uncertainties in that process remain the level of turbulence, the threshold collision velocities at which dust growth stalls, and the evolution of dust porosity. ▪ Symmetric and asymmetric substructures are widespread. Dust traps appear to be solving several long-standing issues in planet formation models, and they are observationally consistent with being sites of active planetesimal formation. ▪ In some instances, planets have been identified as the causes behind substructures. This underlines the need to study earlier stages of disks to understand how planets can form so rapidly. In the future, better probes of the physical conditions in optically thick regions, including densities, turbulence strength, kinematics, and particle properties, will be essential for unraveling the physical processes at play.
中文翻译:
原行星盘中的尘埃生长和演化
在过去的十年中,观测能力的进步,特别是阿塔卡马大型毫米/亚毫米阵列 (ALMA) 和光谱极化高对比度系外行星搜索 (SPHERE) 仪器,以及卵石吸积等理论创新,重塑了我们对行星形成和原行星盘物理学的理解。尽管取得了这些进展,但从星际介质到原行星盘中的运输和生长,再到成为引力束缚的天体,微米级尘埃的蜿蜒路径上仍然存在谜团。这篇综述概述了我们目前对星际盘中尘埃演变的了解,得出了以下见解:▪理论和实验室研究已经准确地预测了尘埃颗粒的生长到容易通过径向漂移和沉降等传输过程积累的大小。▪ 该过程中的关键不确定性仍然是湍流水平、尘埃生长停滞的阈值碰撞速度以及尘埃孔隙率的演变。▪ 对称和不对称子结构很普遍。尘埃陷阱似乎正在解决行星形成模型中几个长期存在的问题,它们在观测上与作为活跃行星形成的地点是一致的。▪ 在某些情况下,行星已被确定为子结构背后的原因。这强调了研究盘的早期阶段以了解行星如何如此迅速形成的必要性。未来,更好地探测光学厚区域的物理条件,包括密度、湍流强度、运动学和粒子特性,对于解开其中的物理过程至关重要。
更新日期:2024-04-19
中文翻译:
原行星盘中的尘埃生长和演化
在过去的十年中,观测能力的进步,特别是阿塔卡马大型毫米/亚毫米阵列 (ALMA) 和光谱极化高对比度系外行星搜索 (SPHERE) 仪器,以及卵石吸积等理论创新,重塑了我们对行星形成和原行星盘物理学的理解。尽管取得了这些进展,但从星际介质到原行星盘中的运输和生长,再到成为引力束缚的天体,微米级尘埃的蜿蜒路径上仍然存在谜团。这篇综述概述了我们目前对星际盘中尘埃演变的了解,得出了以下见解:▪理论和实验室研究已经准确地预测了尘埃颗粒的生长到容易通过径向漂移和沉降等传输过程积累的大小。▪ 该过程中的关键不确定性仍然是湍流水平、尘埃生长停滞的阈值碰撞速度以及尘埃孔隙率的演变。▪ 对称和不对称子结构很普遍。尘埃陷阱似乎正在解决行星形成模型中几个长期存在的问题,它们在观测上与作为活跃行星形成的地点是一致的。▪ 在某些情况下,行星已被确定为子结构背后的原因。这强调了研究盘的早期阶段以了解行星如何如此迅速形成的必要性。未来,更好地探测光学厚区域的物理条件,包括密度、湍流强度、运动学和粒子特性,对于解开其中的物理过程至关重要。