当前位置: X-MOL 学术ACS Appl. Polym. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical Poly(vinylidene fluoride) (PVDF) Membranes Using Polyethylenimine Cross-Linked Polydopamine-Bound Carbon Nanotubes
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2024-04-19 , DOI: 10.1021/acsapm.3c02960
Abdelrahman M. Awad 1 , Charles-François de Lannoy 1, 2
Affiliation  

Electrochemical membranes (ECMs) are an emerging multifunctional separation technology that enables simultaneous contaminant filtration and reaction due to their electrically conductive porous surface coatings. Physical coating stability remains a technical challenge for ECMs, which are largely based on carbonaceous nanomaterials or metallic thin films. In this research, binding chemistry based on polydopamine (PDA) and polyethylenimine (PEI) was developed to prepare physically stable ECMs. Poly(vinylidene fluoride) (PVDF) ultrafiltration membranes were coated with PEI cross-linked PDA followed by the deposition of carboxyl-functionalized single/double-walled carbon nanotubes (SW/DWCNTs-COOH). Fabricated membranes were characterized for their structural, physicochemical, electrochemical, and separation properties. In a batch electrochemical system, the membranes achieved >99.2% electrochemical reduction of methyl orange (MO) in 120 min. Results revealed that the PDA/PEI intermediate layer can significantly enhance the adhesion between the SW/DWCNTs and the underlying polymer membrane without a substantial reduction (<10%) in water permeability. Response surface methodology (RSM) was employed to optimize the permeability and surface electrical conductivity of ECMs by studying the influence of PDA concentration, PEI concentration, and the branched-amine content of PEI in the coating solution. RSM analysis demonstrated two factorial interactions between PDA and PEI concentrations, as well as PEI concentration and PEI branch molecular weight. Our optimization study revealed that the use of a 1:1 ratio of PDA/PEI at low concentrations (∼2 mg/mL) and high PEI branch Mw (∼1200) was the ideal preparation condition within the tested design space to maximize both the water permeability (∼895 L/m2/h/bar) and electrical conductivity (∼29,761 S/m). This optimized cross-linking chemistry demonstrates the ability to make practical and physically stable ECMs on chemically inert PVDF membranes, expanding the range of membranes that can be used to create electrochemical membranes.

中文翻译:

使用聚乙烯亚胺交联聚多巴胺结合碳纳米管的电化学聚偏二氟乙烯 (PVDF) 膜

电化学膜 (ECM) 是一种新兴的多功能分离技术,由于其导电多孔表面涂层,可以同时进行污染物过滤和反应。对于主要基于碳质纳米材料或金属薄膜的 ECM 来说,物理涂层稳定性仍然是一个技术挑战。在这项研究中,开发了基于聚多巴胺(PDA)和聚乙烯亚胺(PEI)的结合化学来制备物理稳定的ECM。聚偏氟乙烯 (PVDF) 超滤膜涂有 PEI 交联 PDA,然后沉积羧基功能化的单/双壁碳纳米管 (SW/DWCNTs-COOH)。制造的膜的结构、物理化学、电化学和分离特性被表征。在批量电化学系统中,膜在 120 分钟内实现了甲基橙 (MO) 的电化学还原 >99.2%。结果表明,PDA/PEI 中间层可以显着增强 SW/DWCNT 与底层聚合物膜之间的粘附力,而透水性不会大幅降低 (<10%)。采用响应面法 (RSM) 通过研究涂层溶液中 PDA 浓度、PEI 浓度和 PEI 支链胺含量的影响来优化 ECM 的渗透性和表面电导率。 RSM 分析证明了 PDA 和 PEI 浓度以及 PEI 浓度和 PEI 支链分子量之间的两个因子相互作用。我们的优化研究表明,在低浓度 (∼2 mg/mL) 和高 PEI 支链M w (∼1200)下使用 1:1 比例的 PDA/PEI是测试设计空间内的理想制备条件,可以最大限度地提高两者的性能。透水性(∼895 L/m 2 /h/bar)和电导率(∼29,761 S/m)。这种优化的交联化学展示了在化学惰性 PVDF 膜上制造实用且物理稳定的 ECM 的能力,扩大了可用于制造电化学膜的膜范围。
更新日期:2024-04-19
down
wechat
bug