当前位置: X-MOL 学术Acc. Mater. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advances in n-Type Chemical Vapor Deposition Diamond Growth: Morphology and Dopant Control
Accounts of Materials Research ( IF 14.0 ) Pub Date : 2024-04-17 , DOI: 10.1021/accountsmr.3c00273
Rozita Rouzbahani 1 , Kamatchi Jothiramalingam Sankaran 2 , Paulius Pobedinskas 1 , Ken Haenen 1
Affiliation  

Diamond, a wide bandgap semiconductor, has captivated researchers for decades due to its exceptional properties. While p-type doping has dominated the field, the advent of n-type diamond, doped by nitrogen or phosphorus, has unlocked novel prospects for diverse applications. Nonetheless, the chemical vapor deposition (CVD) of n-type diamond faces substantial hurdles, particularly concerning crystalline quality and dopant concentration control. In this Account, we summarize our progress in developing high quality CVD n-type diamond films. Our research initiates with nitrogen introduction into the CH4/H2 CVD plasma for depositing polycrystalline diamond films. The addition of 4% N2 gas induces the formation of ultra-nanosized diamond grains through CN species, but further increases in nitrogen content result in grain agglomeration into larger sizes. Fixing 3% of N2 in the CVD plasma, we explore the influence of methane concentration on N-doped nanocrystalline diamond (NCD) films. At a low methane concentration of 1%, faceted diamond grains are formed, while increasing methane to 15% yields nanoneedles encased in nanographitic phases, featuring a low resistivity of 90 Ω·cm. We further investigate P-doped polycrystalline diamond films, where preliminary examinations of P-doped NCD reveal well-defined grain structures but also morphological imperfections and twin boundaries, with a phosphorus incorporation of ≈1019 cm–3. Our investigations also cover P-doped (110)-textured polycrystalline CVD diamond films, finding that the phosphorus concentration varies with grain misorientation and that higher phosphine concentrations lead to a more uniform distribution. Additionally, we note that an increase in the [P]/[C] ratio in the CVD plasma of P-doped diamond growths leads to the transformation of NCD to ultra-NCD, reducing residual stress, and affecting film quality. In a complementary investigation, we explore the codoping of NCD films with nitrogen and phosphorus, observing a transition from micron-sized faceted diamond grains to nanosized grains with increasing nitrogen content at a fixed amount of phosphorus concentration in the CVD plasma.

中文翻译:


n 型化学气相沉积金刚石生长的进展:形态和掺杂剂控制



金刚石是一种宽带隙半导体,由于其卓越的性能,几十年来一直吸引着研究人员。虽然 p 型掺杂在该领域占据主导地位,但掺杂氮或磷的 n 型金刚石的出现为各种应用开辟了新的前景。尽管如此,n 型金刚石的化学气相沉积 (CVD) 面临着巨大的障碍,特别是在晶体质量和掺杂剂浓度控制方面。在本报告中,我们总结了我们在开发高质量 CVD n 型金刚石薄膜方面取得的进展。我们的研究始于将氮气引入 CH 4 /H 2 CVD 等离子体以沉积多晶金刚石薄膜。添加4%的N 2 气体通过CN物质诱导超纳米金刚石晶粒的形成,但氮含量的进一步增加导致晶粒团聚成更大的尺寸。在CVD等离子体中固定3%的N 2 ,我们探讨了甲烷浓度对N掺杂纳米晶金刚石(NCD)薄膜的影响。在 1% 的低甲烷浓度下,形成多面金刚石颗粒,而将甲烷增加到 15% 时,会产生包裹在纳米石墨相中的纳米针,其电阻率低至 90 Ω·cm。我们进一步研究了 P 掺杂多晶金刚石薄膜,其中 P 掺杂 NCD 的初步检查揭示了明确的晶粒结构,但也显示了形态缺陷和孪晶界,磷掺入量为 ≈10 19 cm –3 。我们的研究还涵盖了 P 掺杂 (110) 织构的多晶 CVD 金刚石薄膜,发现磷浓度随晶粒取向错误而变化,并且较高的磷化氢浓度导致更均匀的分布。 此外,我们注意到,P 掺杂金刚石生长的 CVD 等离子体中 [P]/[C] 比率的增加会导致 NCD 转变为超 NCD,从而减少残余应力并影响薄膜质量。在一项补充研究中,我们探索了 NCD 薄膜与氮和磷的共掺杂,观察到在 CVD 等离子体中磷浓度固定的情况下,随着氮含量的增加,从微米级多面金刚石晶粒到纳米级晶粒的转变。
更新日期:2024-04-17
down
wechat
bug