Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-04-16 , DOI: 10.2140/ant.2024.18.899 Gal Porat
We develop a version of Sen theory for equivariant vector bundles on the Fargues–Fontaine curve. We show that every equivariant vector bundle canonically descends to a locally analytic vector bundle. A comparison with the theory of -modules in the cyclotomic case then recovers the Cherbonnier–Colmez decompletion theorem. Next, we focus on the subcategory of de Rham locally analytic vector bundles. Using the -adic monodromy theorem, we show that each locally analytic vector bundle has a canonical differential equation for which the space of solutions has full rank. As a consequence, and its sheaf of solutions are in a natural correspondence, which gives a geometric interpretation of a result of Berger on -modules. In particular, if is a de Rham Galois representation, its associated filtered -module is realized as the space of global solutions to the differential equation. A key to our approach is a vanishing result for the higher locally analytic vectors of representations satisfying the Tate–Sen formalism, which is also of independent interest.
中文翻译:
Fargues-Fontaine 曲线上的局部解析向量丛
我们针对 Fargues-Fontaine 曲线上的等变向量丛开发了 Sen 理论的一个版本。我们证明每个等变向量丛规范地下降到局部解析向量丛。与理论的比较然后,分圆情况下的模块恢复 Cherbonnier–Colmez 不完备定理。接下来,我们关注 de Rham 局部解析向量丛的子类。使用-adic monodromy 定理,我们证明每个局部解析向量丛具有解空间具有满秩的正则微分方程。作为结果,及其一系列解决方案处于自然对应关系,这给出了 Berger 的结果的几何解释-模块。特别是,如果是 de Rham Galois 表示,其相关的过滤-模块被实现为微分方程的全局解的空间。我们方法的关键是满足泰特-森形式主义的表示的更高局部分析向量的消失结果,这也是独立的兴趣。