International Journal of Geometric Methods in Modern Physics ( IF 2.1 ) Pub Date : 2024-04-13 , DOI: 10.1142/s0219887824400152 Vladimir S. Gerdjikov 1, 2 , Georgi G. Grahovski 3
This paper is devoted to -wave equations with constant boundary conditions related to symplectic Lie algebras. We study the spectral properties of a class of Lax operators , whose potentials tend to constants for . For special choices of , we outline the spectral properties of , the direct scattering transform and construct its fundamental analytic solutions. We generalize Wronskian relations for the case of CBC — this allows us to analyze the mapping between the scattering data and the -derivative of the potential . Next, using the Wronskian relations, we derive the dispersion laws for the -wave hierarchy and describe the NLEE related to the given Lax operator.
中文翻译:
具有恒定边界条件的 N 波层次。光谱特性
本文致力于-与辛李代数相关的具有恒定边界条件的波动方程。我们研究一类 Lax 算子的谱特性,其潜力趋向于常数为了。对于特殊选择,我们概述了光谱特性,直接散射变换并构造其基本解析解。我们将 Wronskian 关系推广到 CBC 的情况——这使我们能够分析散射数据和-势能的导数。接下来,使用朗斯基关系,我们推导出色散定律-wave 层次结构并描述与给定 Lax 算子相关的 NLEE。