当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-step synthesis of seamlessly contacted non-precious metal cocatalyst modified CdS hollow nanoflowers spheres for photocatalytic hydrogen production
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2024-02-24 , DOI: 10.1016/j.jmst.2023.11.081
Haibo Zhang , Chunfeng Shao , Zhongliao Wang , Jinfeng Zhang , Kai Dai

This study ingeniously synthesized a novel CdS/NiS hollow nanoflower sphere (HNS) using a one-step method to enhance photocatalytic hydrogen production activity. Compared to conventional preparation methods, this approach features seamlessly interfaced contact that facilitates efficient electron transfer across the interface. The internal hollow structure allows for multiple light reflections, maximizing light absorption, while the exterior shell and inner surfaces simultaneously offer active sites for reactions. The modification with non-noble metal NiS enables the extraction of electrons from CdS to the NiS surface, achieving rapid charge separation. Furthermore, adsorption-free energy calculations reveal that the NiS surface is more conducive to photocatalytic hydrogen generation, providing additional reaction active sites. The results demonstrate a hydrogen production rate of 2.18 mmol g h for CdS/NiS HNS, which is 9.48 times greater than that of pristine CdS. This work presents a novel approach for synthesizing seamlessly interfaced contacts between photocatalysts and cocatalysts, offering new insight into efficient one-step synthesis for enhanced photocatalytic performance.

中文翻译:

一步合成无缝接触非贵金属助催化剂修饰的CdS空心纳米花球用于光催化制氢

这项研究巧妙地采用一步法合成了一种新型的CdS/NiS空心纳米花球(HNS),以增强光催化产氢活性。与传统的制备方法相比,这种方法具有无缝界面接触的特点,有助于跨界面有效的电子转移。内部中空结构允许多次光反射,最大限度地提高光吸收,而外壳和内表面同时提供反应活性位点。非贵金属NiS的修饰可以将电子从CdS提取到NiS表面,实现快速电荷分离。此外,无吸附能计算表明,NiS表面更有利于光催化产氢,提供额外的反应活性位点。结果表明,CdS/NiS HNS 的产氢率为 2.18 mmol gh,是原始 CdS 的 9.48 倍。这项工作提出了一种合成光催化剂和助催化剂之间无缝界面接触的新方法,为高效一步合成以增强光催化性能提供了新的见解。
更新日期:2024-02-24
down
wechat
bug