当前位置:
X-MOL 学术
›
J. Environ. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
CO2 capture and methanation using Ru/Na2O/Al2O3 dual-function materials: Effect of support synthesis method and Ru load
Journal of Environmental Chemical Engineering ( IF 7.4 ) Pub Date : 2024-04-05 , DOI: 10.1016/j.jece.2024.112712 Anastasios I. Tsiotsias , Nikolaos D. Charisiou , Aseel G.S. Hussien , Aasif A. Dabbawala , Victor Sebastian , Kyriaki Polychronopoulou , Maria A. Goula
Journal of Environmental Chemical Engineering ( IF 7.4 ) Pub Date : 2024-04-05 , DOI: 10.1016/j.jece.2024.112712 Anastasios I. Tsiotsias , Nikolaos D. Charisiou , Aseel G.S. Hussien , Aasif A. Dabbawala , Victor Sebastian , Kyriaki Polychronopoulou , Maria A. Goula
Ru/NaO/AlO dual-function materials were prepared by varying the support synthesis method and Ru load. Different sol-gel-type and precipitation/ hydrothermal preparation methods were employed in order to synthesize materials with variable nanostructure, surface chemistry and textural properties, thereby effectively tuning the material activity for the methanation of pre-adsorbed CO. The materials were thoroughly characterized and evaluated during the integrated CO capture and methanation process. It was found that the Pechini sol-gel synthesis method led to the structure with the highest porosity, basic site population and high dispersion of methanation and adsorption active Ru and Al-O-Na sites. The corresponding material displayed the highest CH yield (0.47 mmol/g) and fastest CH production kinetics, while stable performance was achieved under successive adsorption-hydrogenation cycles and under the co-presence of O and HO during CO adsorption. Lastly, the increase in Ru load (0.25 wt% - 4 wt% range) could incrementally improve the CH production kinetics during hydrogenation.
中文翻译:
使用 Ru/Na2O/Al2O3 双功能材料捕获 CO2 并进行甲烷化:载体合成方法和 Ru 负载量的影响
通过改变载体合成方法和Ru负载量制备了Ru/Na2O/Al2O双功能材料。采用不同的溶胶-凝胶型和沉淀/水热制备方法来合成具有可变纳米结构、表面化学和织构特性的材料,从而有效地调节预吸附CO甲烷化的材料活性。对材料进行了彻底的表征和研究。在综合二氧化碳捕获和甲烷化过程中进行评估。结果发现,Pechini 溶胶-凝胶合成方法导致结构具有最高的孔隙率、碱性位点数量以及高度分散的甲烷化和吸附活性Ru和Al-O-Na位点。相应的材料表现出最高的CH产率(0.47 mmol/g)和最快的CH生成动力学,同时在连续的吸附-加氢循环以及CO吸附过程中O和H2O共存下实现了稳定的性能。最后,Ru 负载量的增加(0.25 wt% - 4 wt% 范围)可以逐渐改善加氢过程中 CH 的生产动力学。
更新日期:2024-04-05
中文翻译:
使用 Ru/Na2O/Al2O3 双功能材料捕获 CO2 并进行甲烷化:载体合成方法和 Ru 负载量的影响
通过改变载体合成方法和Ru负载量制备了Ru/Na2O/Al2O双功能材料。采用不同的溶胶-凝胶型和沉淀/水热制备方法来合成具有可变纳米结构、表面化学和织构特性的材料,从而有效地调节预吸附CO甲烷化的材料活性。对材料进行了彻底的表征和研究。在综合二氧化碳捕获和甲烷化过程中进行评估。结果发现,Pechini 溶胶-凝胶合成方法导致结构具有最高的孔隙率、碱性位点数量以及高度分散的甲烷化和吸附活性Ru和Al-O-Na位点。相应的材料表现出最高的CH产率(0.47 mmol/g)和最快的CH生成动力学,同时在连续的吸附-加氢循环以及CO吸附过程中O和H2O共存下实现了稳定的性能。最后,Ru 负载量的增加(0.25 wt% - 4 wt% 范围)可以逐渐改善加氢过程中 CH 的生产动力学。