当前位置: X-MOL 学术IEEE Trans. Med. Imaging › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
XIOSIS: An X-Ray-Based Intra-Operative Image-Guided Platform for Oncology Smart Material Delivery
IEEE Transactions on Medical Imaging ( IF 8.9 ) Pub Date : 2024-04-11 , DOI: 10.1109/tmi.2024.3387830
Hamed Hooshangnejad 1 , Debarghya China 1 , Yixuan Huang 1 , Wojciech Zbijewski 1 , Ali Uneri 1 , Todd McNutt 2 , Junghoon Lee 2 , Kai Ding 2
Affiliation  

Image-guided interventional oncology procedures can greatly enhance the outcome of cancer treatment. As an enhancing procedure, oncology smart material delivery can increase cancer therapy’s quality, effectiveness, and safety. However, the effectiveness of enhancing procedures highly depends on the accuracy of smart material placement procedures. Inaccurate placement of smart materials can lead to adverse side effects and health hazards. Image guidance can considerably improve the safety and robustness of smart material delivery. In this study, we developed a novel generative deep-learning platform that highly prioritizes clinical practicality and provides the most informative intra-operative feedback for image-guided smart material delivery. XIOSIS generates a patient-specific 3D volumetric computed tomography (CT) from three intraoperative radiographs (X-ray images) acquired by a mobile C-arm during the operation. As the first of its kind, XIOSIS (i) synthesizes the CT from small field-of-view radiographs;(ii) reconstructs the intra-operative spacer distribution; (iii) is robust; and (iv) is equipped with a novel soft-contrast cost function. To demonstrate the effectiveness of XIOSIS in providing intra-operative image guidance, we applied XIOSIS to the duodenal hydrogel spacer placement procedure. We evaluated XIOSIS performance in an image-guided virtual spacer placement and actual spacer placement in two cadaver specimens. XIOSIS showed a clinically acceptable performance, reconstructed the 3D intra-operative hydrogel spacer distribution with an average structural similarity of 0.88 and Dice coefficient of 0.63 and with less than 1 cm difference in spacer location relative to the spinal cord.

中文翻译:


XIOSIS:基于 X 射线的术中图像引导平台,用于肿瘤学智能材料递送



图像引导的介入肿瘤学手术可以大大提高癌症治疗的结果。作为一种增强程序,肿瘤学智能材料递送可以提高癌症治疗的质量、有效性和安全性。然而,增强程序的有效性在很大程度上取决于智能材料放置程序的准确性。智能材料的放置不准确会导致不良副作用和健康危害。图像引导可以显著提高智能物料输送的安全性和稳健性。在这项研究中,我们开发了一种新颖的生成式深度学习平台,该平台高度重视临床实用性,并为图像引导的智能材料交付提供信息最丰富的术中反馈。XIOSIS 从手术期间由移动 C 臂采集的三张术中 X 光片(X 射线图像)生成患者特定的 3D 体积计算机断层扫描 (CT)。作为同类产品中的首创,XIOSIS (i) 从小视场 X 光片合成 CT;(ii) 重建术中垫片分布;(iii) 稳健;(iv) 配备了新颖的软对比度成本函数。为了证明 XIOSIS 在提供术中图像引导方面的有效性,我们将 XIOSIS 应用于十二指肠水凝胶垫片放置手术。我们在两个尸体标本中评估了图像引导虚拟垫片放置和实际垫片放置中的 XIOSIS 性能。XIOSIS 显示出临床可接受的性能,重建了 3D 术中水凝胶垫片分布,平均结构相似性为 0.88,Dice 系数为 0.63,垫片位置相对于脊髓的差异小于 1 cm。
更新日期:2024-04-11
down
wechat
bug