International Journal of Geometric Methods in Modern Physics ( IF 2.1 ) Pub Date : 2024-04-10 , DOI: 10.1142/s0219887824501640 Sampa Pahan 1 , Souvik Dutta 2
In this paper, we aim to characterize the sequential warped product -almost gradient conformal Ricci–Bourguignon soliton. We derive applications of some vector fields like conformal vector field, torse-forming vector field, torqued vector field on -almost conformal Ricci–Bourguignon soliton. The inheritance properties of the Einstein-like sequential warped product -almost gradient conformal Ricci–Bourguignon solitons of class types are investigated in this paper. Later we show that if is a sequential warped product of a complete connected -dimensional Riemannian manifold and one-dimensional Riemannian manifolds and admitting -almost conformal Ricci–Bourguignon soliton, then becomes a -dimensional sphere of radius . We have discovered that for a -almost gradient conformal Ricci–Bourguignon soliton sequential warped product, the warping functions are constants under certain conditions.
中文翻译:
序列翘曲积流形上特殊类型 Ricci-Bourguignon 孤子的表征
在本文中,我们的目标是描述顺序翘曲产品的特征- 几乎梯度共形 Ricci-Bourguignon 孤子。我们推导了一些矢量场的应用,如共形矢量场、扭转形成矢量场、扭转矢量场-几乎共形的里奇-布吉尼翁孤子。类爱因斯坦序列扭曲积的继承性质-类类型的几乎梯度共形 Ricci-Bourguignon 孤子本文对此进行了研究。后来我们证明如果是完全连接的顺序扭曲乘积维黎曼流形和一维黎曼流形和承认- 几乎共形 Ricci-Bourguignon 孤子,那么成为一个半径维球体。我们发现对于一个-几乎梯度共形的Ricci-Bourguignon孤子序列翘曲积,翘曲函数在一定条件下是常数。