当前位置:
X-MOL 学术
›
Policy and Society
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Framing contestation and public influence on policymakers: evidence from US artificial intelligence policy discourse
Policy and Society ( IF 5.7 ) Pub Date : 2024-04-11 , DOI: 10.1093/polsoc/puae007 Daniel S Schiff 1
Policy and Society ( IF 5.7 ) Pub Date : 2024-04-11 , DOI: 10.1093/polsoc/puae007 Daniel S Schiff 1
Affiliation
As artificial intelligence (AI) policy has begun to take shape in recent years, policy actors have worked to influence policymakers by strategically promoting issue frames that define the problems and solutions policymakers should attend to. Three such issue frames are especially prominent, surrounding AI’s economic, geopolitical, and ethical dimensions. Relatedly, while technology policy is traditionally expert-dominated, new governance paradigms are encouraging increased public participation along with heightened attention to social and ethical dimensions of technology. This study aims to provide insight into whether members of the public and the issue frames they employ shape—or fail to shape—policymaker agendas, particularly for highly contested and technical policy domains. To assess this question, the study draws on a dataset of approximately five million Twitter messages from members of the public related to AI, as well as corresponding AI messages from the 115th and 116th US Congresses. After using text analysis techniques to identify the prevalence of issue frames, the study applies autoregressive integrated moving average and vector autoregression modeling to determine whether issue frames used by the public appear to influence the subsequent messaging used by federal US policymakers. Results indicate that the public does lead policymaker attention to AI generally. However, the public does not have a special role in shaping attention to ethical implications of AI, as public influence occurs only when the public discusses AI’s economic dimensions. Overall, the results suggest that calls for public engagement in AI policy may be underrealized and potentially circumscribed by strategic considerations.
中文翻译:
框架争论和公众对政策制定者的影响:来自美国人工智能政策话语的证据
近年来,随着人工智能 (AI) 政策开始形成,政策参与者通过战略性地推广定义政策制定者应该关注的问题和解决方案的问题框架,努力影响政策制定者。围绕 AI 的经济、地缘政治和道德维度,三个这样的问题框架尤为突出。与此相关的是,虽然技术政策传统上由专家主导,但新的治理范式正在鼓励增加公众参与,同时提高对技术的社会和道德维度的关注。本研究旨在深入了解公众及其采用的问题框架是否影响了政策制定者的议程,特别是对于高度竞争和技术性的政策领域。为了评估这个问题,该研究利用了一个数据集,其中包含来自公众的大约 500 万条 Twitter 消息,这些消息来自美国第 115 届和第 116 届国会的相应 AI 消息。在使用文本分析技术确定问题框架的普遍性后,该研究应用自回归集成移动平均和向量自回归模型来确定公众使用的问题框架是否似乎会影响美国联邦政策制定者使用的后续信息。结果表明,公众确实普遍引导政策制定者关注人工智能。然而,公众在塑造对 AI 的道德影响的关注方面并没有特殊作用,因为只有当公众讨论 AI 的经济维度时,公众影响力才会发生。总体而言,结果表明,公众参与 AI 政策的呼吁可能未得到充分实现,并且可能受到战略考虑的限制。
更新日期:2024-04-11
中文翻译:

框架争论和公众对政策制定者的影响:来自美国人工智能政策话语的证据
近年来,随着人工智能 (AI) 政策开始形成,政策参与者通过战略性地推广定义政策制定者应该关注的问题和解决方案的问题框架,努力影响政策制定者。围绕 AI 的经济、地缘政治和道德维度,三个这样的问题框架尤为突出。与此相关的是,虽然技术政策传统上由专家主导,但新的治理范式正在鼓励增加公众参与,同时提高对技术的社会和道德维度的关注。本研究旨在深入了解公众及其采用的问题框架是否影响了政策制定者的议程,特别是对于高度竞争和技术性的政策领域。为了评估这个问题,该研究利用了一个数据集,其中包含来自公众的大约 500 万条 Twitter 消息,这些消息来自美国第 115 届和第 116 届国会的相应 AI 消息。在使用文本分析技术确定问题框架的普遍性后,该研究应用自回归集成移动平均和向量自回归模型来确定公众使用的问题框架是否似乎会影响美国联邦政策制定者使用的后续信息。结果表明,公众确实普遍引导政策制定者关注人工智能。然而,公众在塑造对 AI 的道德影响的关注方面并没有特殊作用,因为只有当公众讨论 AI 的经济维度时,公众影响力才会发生。总体而言,结果表明,公众参与 AI 政策的呼吁可能未得到充分实现,并且可能受到战略考虑的限制。