当前位置: X-MOL 学术IEEE J. Solid-State Circuits › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Monolithic Electronic–Biophotonic System-on-Chip for Label-Free Real-Time Molecular Sensing
IEEE Journal of Solid-State Circuits ( IF 4.6 ) Pub Date : 2024-04-09 , DOI: 10.1109/jssc.2024.3382933
Christos Adamopoulos 1 , Hyeong-Seok Oh 1 , Sidney Buchbinder 1 , Panagiotis Zarkos 1 , Pavan Bhargava 1 , Asmaysinh Gharia 2 , Ali M. Niknejad 1 , Mekhail Anwar 2 , Vladimir Stojanović 1
Affiliation  

Label-free miniaturized optical sensors can have a tremendous impact on highly sensitive and scalable point-of-care (PoC) diagnostics by monitoring real-time molecular interactions without any labels. However, current biophotonic platforms are limited by complex optical and external readout equipment, precluding their use in a PoC setting. In this work, we address this challenge by developing a first-of-its-kind fully integrated electronic–photonic label-free molecular sensor utilizing microring resonators (MRRs) co-integrated with on-chip electronics in a high-volume advanced electronic process. In particular, we present an arrayed electronic–photonic system-on-chip (EPSoC) in GlobalFoundries (GF) 45-nm RFSOI with 60 5- $\mu \text{m}$ radius MRRs connected to on-chip receivers, approaching an idealized limit of detection (LoD) equivalent to a single 140-nm viral particle. To further enhance the LoD, we propose a dual-ring phase-based sensing architecture, boosting the system’s sensitivity by $3.7\times $ compared to our previously reported intensity-based single MRR scheme. An integrated heater embedded in the design of the ring and an on-chip controller locks the ring’s resonance at the desired point of operation, eliminating the need for a tunable laser. The inherent intrinsic limitations of MRRs due to ambient temperature variations are addressed with an on-chip differential scheme using sensing and reference rings to cancel common mode errors. We demonstrate the sensing capabilities of the EPSoC by monitoring in real-time binding events of bovine serum albumin (BSA), anti-BSA molecules, and streptavidin-coated nanoparticles, unlocking the door toward self-contained fully integrated lab-on-chip (LoC) photonic sensors for PoC applications.

中文翻译:


用于无标记实时分子传感的单片电子-生物光子片上系统



无标签微型光学传感器可以在没有任何标签的情况下监测实时分子相互作用,对高度敏感和可扩展的即时护理 (PoC) 诊断产生巨大影响。然而,当前的生物光子平台受到复杂的光学和外部读出设备的限制,妨碍了它们在 PoC 设置中的使用。在这项工作中,我们通过开发首个完全集成的电子-光子无标记分子传感器来应对这一挑战,该传感器利用微环谐振器(MRR)与大批量先进电子工艺中的片上电子器件共同集成。特别是,我们在 GlobalFoundries (GF) 45-nm RFSOI 中展示了一种阵列电子光子片上系统 (EPSoC),具有 60 个 5- $\mu \文本{m}$ radius MRR 连接到片上接收器,接近相当于单个 140 nm 病毒颗粒的理想检测限 (LoD)。为了进一步增强 LoD,我们提出了一种基于双环相位的传感架构,通过以下方式提高系统的灵敏度: $3.7\次$与我们之前报道的基于强度的单一 MRR 方案相比。环设计中嵌入的集成加热器和片上控制器将环的谐振锁定在所需的操作点,从而无需可调谐激光器。由于环境温度变化而导致的 MRR 固有局限性可通过片上差分方案解决,该方案使用传感和参考环来消除共模误差。 我们通过监测牛血清白蛋白 (BSA)、抗 BSA 分子和链霉亲和素包被的纳米粒子的实时结合事件来展示 EPSoC 的传感功能,打开了通往独立的完全集成芯片实验室的大门( LoC)用于 PoC 应用的光子传感器。
更新日期:2024-04-09
down
wechat
bug