当前位置:
X-MOL 学术
›
J. Phys. Chem. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tuning Optical Properties of Plasmonic Aerosols through Ligand–Solvent Interactions
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-04-09 , DOI: 10.1021/acs.jpclett.4c00499
Rachel A Dziatko 1 , Sreyas M Chintapalli 2 , Yuqi Song 1 , Eleni Daskopoulou 2 , Dana E Kachman 2 , Zachary Zander 3 , Danielle L Kuhn 3 , Susanna M Thon 2, 4 , Arthur E Bragg 1
The Journal of Physical Chemistry Letters ( IF 4.8 ) Pub Date : 2024-04-09 , DOI: 10.1021/acs.jpclett.4c00499
Rachel A Dziatko 1 , Sreyas M Chintapalli 2 , Yuqi Song 1 , Eleni Daskopoulou 2 , Dana E Kachman 2 , Zachary Zander 3 , Danielle L Kuhn 3 , Susanna M Thon 2, 4 , Arthur E Bragg 1
Affiliation
![]() |
Plasmonic nanoparticles are highly tunable light-harvesting materials with a wide array of applications in photonics and catalysis. More recently, there has been interest in using aerosolized plasmonic nanoparticles for cloud formation, airborne photocatalysts, and molecular sensors, all of which take advantage of the large scattering cross sections and the ability of these particles to support intense local field enhancement (“hot spots”). While extensive research has investigated properties of plasmonic particles in the solution phase, surfaces, and films, aerosolized plasmonics are relatively unexplored. Here, we demonstrate how the capping ligand, suspension solvent, and atomization conditions used for aerosol generation control the steady-state optical properties of aerosolized Silica@Au plasmonic nanoshells. Our experimental results, supported with spectral simulations, illustrate that ligand coverage and atomization conditions control the degree of solvent retention and thus the spectral characteristics and potential access to surfaces for catalysis in the aerosol phase, opening a new regime for tunable applications of plasmonic metamaterials.
中文翻译:
通过配体-溶剂相互作用调节等离子气溶胶的光学性质
等离子体纳米颗粒是高度可调的光捕获材料,在光子学和催化领域具有广泛的应用。最近,人们对使用雾化等离子体纳米颗粒进行云形成、空气传播的光催化剂和分子传感器产生了兴趣,所有这些都利用了大散射截面和这些颗粒支持强烈局部场增强的能力(“热点”) ”)。虽然广泛的研究已经调查了溶液相、表面和薄膜中等离子体粒子的特性,但雾化等离子体激元相对尚未被探索。在这里,我们演示了用于气溶胶生成的封端配体、悬浮溶剂和雾化条件如何控制气溶胶化的二氧化硅@金等离子体纳米壳的稳态光学性质。我们的实验结果在光谱模拟的支持下表明,配体覆盖和雾化条件控制着溶剂保留的程度,从而控制着气溶胶相中的光谱特征和接触表面进行催化的潜在途径,为等离子体超材料的可调应用开辟了新的领域。
更新日期:2024-04-09
中文翻译:
![](https://scdn.x-mol.com/jcss/images/paperTranslation.png)
通过配体-溶剂相互作用调节等离子气溶胶的光学性质
等离子体纳米颗粒是高度可调的光捕获材料,在光子学和催化领域具有广泛的应用。最近,人们对使用雾化等离子体纳米颗粒进行云形成、空气传播的光催化剂和分子传感器产生了兴趣,所有这些都利用了大散射截面和这些颗粒支持强烈局部场增强的能力(“热点”) ”)。虽然广泛的研究已经调查了溶液相、表面和薄膜中等离子体粒子的特性,但雾化等离子体激元相对尚未被探索。在这里,我们演示了用于气溶胶生成的封端配体、悬浮溶剂和雾化条件如何控制气溶胶化的二氧化硅@金等离子体纳米壳的稳态光学性质。我们的实验结果在光谱模拟的支持下表明,配体覆盖和雾化条件控制着溶剂保留的程度,从而控制着气溶胶相中的光谱特征和接触表面进行催化的潜在途径,为等离子体超材料的可调应用开辟了新的领域。