当前位置:
X-MOL 学术
›
Nanomaterials
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Erythritol as a Saccharide Multifunctional Electrolyte Additive for Highly Reversible Zinc Anode
Nanomaterials ( IF 4.4 ) Pub Date : 2024-04-08 , DOI: 10.3390/nano14070644
Linjie Li 1 , Zongwei Guo 2 , Shiteng Li 3 , Piting Cao 4 , Weidong Du 1 , Deshi Feng 1 , Wenhui Wei 1 , Fengzhao Xu 1 , Chuangen Ye 1 , Mingzhi Yang 1 , Jing Zhang 1 , Xingshuang Zhang 1 , Yong Li 1
Nanomaterials ( IF 4.4 ) Pub Date : 2024-04-08 , DOI: 10.3390/nano14070644
Linjie Li 1 , Zongwei Guo 2 , Shiteng Li 3 , Piting Cao 4 , Weidong Du 1 , Deshi Feng 1 , Wenhui Wei 1 , Fengzhao Xu 1 , Chuangen Ye 1 , Mingzhi Yang 1 , Jing Zhang 1 , Xingshuang Zhang 1 , Yong Li 1
Affiliation
Dendrite formation and water-triggered side reactions on the surface of Zn metal anodes severely restrict the commercial viability of aqueous zinc-ion batteries (AZIBs). In this work, we introduce erythritol (Et) as an electrolyte additive to enhance the reversibility of zinc anodes, given its cost-effectiveness, mature technology, and extensive utilization in various domains such as food, medicine, and other industries. By combining multiscale theoretical simulation and experimental characterization, it was demonstrated that Et molecules can partially replace the coordination H2O molecules to reshape the Zn2+ solvation sheath and destroy the hydrogen bond network of the aqueous electrolyte. More importantly, Et molecules tend to adsorb on the zinc anode surface, simultaneously inhibit water-triggered side reactions by isolating water and promote uniform and dense deposition by accelerating the Zn2+ diffusion and regulating the nucleation size of the Zn grain. Thanks to this synergistic mechanism, the Zn anode can achieve a cycle life of more than 3900 h at 1 mA cm−2 and an average Coulombic efficiency of 99.77%. Coupling with δ-MnO2 cathodes, the full battery delivers a high specific capacity of 228.1 mAh g−1 with a capacity retention of 76% over 1000 cycles at 1 A g−1.
中文翻译:
赤藓糖醇作为高可逆锌阳极的糖类多功能电解质添加剂
锌金属阳极表面的枝晶形成和水引发的副反应严重限制了水性锌离子电池(AZIB)的商业可行性。在这项工作中,我们引入赤藓糖醇(Et)作为电解液添加剂来增强锌阳极的可逆性,因为它具有成本效益、成熟的技术以及在食品、医药和其他行业等各个领域的广泛应用。通过多尺度理论模拟和实验表征相结合,证明Et分子可以部分取代配位H2O分子,重塑Zn2+溶剂化鞘层并破坏水系电解质的氢键网络。更重要的是,Et分子倾向于吸附在锌阳极表面,同时通过隔离水来抑制水引发的副反应,并通过加速Zn2+扩散和调节Zn晶粒的成核尺寸来促进均匀致密的沉积。由于这种协同机制,锌负极在1 mA cm−2下可以实现超过3900 h的循环寿命,平均库仑效率为99.77%。与 δ-MnO2 正极结合,全电池可提供 228.1 mAh g−1 的高比容量,在 1 A g−1 下经过 1000 次循环后容量保持率为 76%。
更新日期:2024-04-09
中文翻译:

赤藓糖醇作为高可逆锌阳极的糖类多功能电解质添加剂
锌金属阳极表面的枝晶形成和水引发的副反应严重限制了水性锌离子电池(AZIB)的商业可行性。在这项工作中,我们引入赤藓糖醇(Et)作为电解液添加剂来增强锌阳极的可逆性,因为它具有成本效益、成熟的技术以及在食品、医药和其他行业等各个领域的广泛应用。通过多尺度理论模拟和实验表征相结合,证明Et分子可以部分取代配位H2O分子,重塑Zn2+溶剂化鞘层并破坏水系电解质的氢键网络。更重要的是,Et分子倾向于吸附在锌阳极表面,同时通过隔离水来抑制水引发的副反应,并通过加速Zn2+扩散和调节Zn晶粒的成核尺寸来促进均匀致密的沉积。由于这种协同机制,锌负极在1 mA cm−2下可以实现超过3900 h的循环寿命,平均库仑效率为99.77%。与 δ-MnO2 正极结合,全电池可提供 228.1 mAh g−1 的高比容量,在 1 A g−1 下经过 1000 次循环后容量保持率为 76%。