当前位置:
X-MOL 学术
›
ACS Appl. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In Situ Synthesis of Mo and Ti-Dual Oxide-Incorporated Mo2Ti2C3Tx MXene Electrode Using a Lewis Acid-Assisted Method for Pseudocapacitors
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2024-04-04 , DOI: 10.1021/acsaem.4c00438 Dayakar Gandla 1, 2 , Yun’an Zhou 1 , Yihao Yan 1 , Yifan Niu 1 , Fuming Zhang 1 , Daniel Q. Tan 1, 2, 3
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2024-04-04 , DOI: 10.1021/acsaem.4c00438 Dayakar Gandla 1, 2 , Yun’an Zhou 1 , Yihao Yan 1 , Yifan Niu 1 , Fuming Zhang 1 , Daniel Q. Tan 1, 2, 3
Affiliation
MXenes, a class of two-dimensional transition metal carbides and nitrides, hold great promise for electrochemical energy storage applications due to their exceptional electronic conductivity, tunable surface chemistry, and pseudocapacitive charge storage mechanisms. This study introduces a one-step approach to deposit Mo and Ti-dual oxide nanoparticles in situ onto Mo2Ti2C3Tx MXene using the Lewis acid molten salt method (LAMS), meticulously optimizing annealing conditions. The incorporation of Mo and Ti dual oxide nanoparticles improves the pristine Mo2Ti2C3Tx MXene by preventing collapse of the layered structure and restacking of MXene sheets. Both three-electrode and coin cell devices are assessed in an aqueous electrolyte, illustrating the favorable role of the nanoparticles acting as spacers. Remarkable outcomes include a specific capacity of 434 C g–1 at 5 mA cm–2, exceptional capacity retention of 94% after 5000 charge–discharge cycles at 50 mA cm–2, and a high gravimetric energy density of 52.5 W h kg–1 at a power density of 1442 W kg–1 in an aqueous 3 M KOH electrolyte. This research underscores the potential of double transition metal MXenes as energy storage electrodes and an eco-friendly mass synthesis route, contributing to sustainable advancements in energy storage technology.
中文翻译:
使用路易斯酸辅助方法原位合成 Mo 和 Ti-双氧化物掺入 Mo2Ti2C3TX MXene 电极用于赝电容器
MXenes 是一类二维过渡金属碳化物和氮化物,由于其优异的电子导电性、可调节的表面化学和赝电容电荷存储机制,在电化学储能应用中具有广阔的前景。本研究介绍了一种使用路易斯酸熔盐法 (LAMS)将 Mo 和 Ti 双氧化物纳米颗粒原位沉积到 Mo 2 Ti 2 C 3 T x MXene上的一步法,并精心优化了退火条件。 Mo 和 Ti 双氧化物纳米粒子的掺入通过防止层状结构的塌陷和 MXene 片的重新堆叠来改善原始 Mo 2 Ti 2 C 3 T x MXene。三电极和纽扣电池装置均在水性电解质中进行评估,说明了纳米粒子作为间隔物的有利作用。显着的成果包括5 mA cm –2下的比容量为 434 C g –1 ,在 50 mA cm –2下经过 5000 次充放电循环后容量保持率为 94% ,以及 52.5 W h kg –的高重量能量密度。 1在 3 M KOH 水溶液中,功率密度为 1442 W kg –1 。这项研究强调了双过渡金属 MXene 作为储能电极和环保大规模合成路线的潜力,有助于储能技术的可持续发展。
更新日期:2024-04-04
中文翻译:
使用路易斯酸辅助方法原位合成 Mo 和 Ti-双氧化物掺入 Mo2Ti2C3TX MXene 电极用于赝电容器
MXenes 是一类二维过渡金属碳化物和氮化物,由于其优异的电子导电性、可调节的表面化学和赝电容电荷存储机制,在电化学储能应用中具有广阔的前景。本研究介绍了一种使用路易斯酸熔盐法 (LAMS)将 Mo 和 Ti 双氧化物纳米颗粒原位沉积到 Mo 2 Ti 2 C 3 T x MXene上的一步法,并精心优化了退火条件。 Mo 和 Ti 双氧化物纳米粒子的掺入通过防止层状结构的塌陷和 MXene 片的重新堆叠来改善原始 Mo 2 Ti 2 C 3 T x MXene。三电极和纽扣电池装置均在水性电解质中进行评估,说明了纳米粒子作为间隔物的有利作用。显着的成果包括5 mA cm –2下的比容量为 434 C g –1 ,在 50 mA cm –2下经过 5000 次充放电循环后容量保持率为 94% ,以及 52.5 W h kg –的高重量能量密度。 1在 3 M KOH 水溶液中,功率密度为 1442 W kg –1 。这项研究强调了双过渡金属 MXene 作为储能电极和环保大规模合成路线的潜力,有助于储能技术的可持续发展。