当前位置: X-MOL 学术Inorg. Chem. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Bismuth sulfide-impregnated cobalt oxide nanocrystals: An enhanced photocatalyst for improved hydrogen production beneath visible light
Inorganic Chemistry Communications ( IF 4.4 ) Pub Date : 2024-04-01 , DOI: 10.1016/j.inoche.2024.112379
Soha M. Albukhari

Hydrogen (H) is the lightest and greenest fuel compared to conventional energy resources. The production of H could be achieved via several techniques as renewable energy sources. Due to its simplicity, the visible-light H evolution over nanocomposite photocatalysts is an emerging method. Following this, the surfactant-aided sol–gel way has grown Cobalt oxide (CoO) nanoparticles. 3.0–12.0 wt% of bismuth sulfide (Bi2S3) nanocrystals were added to CoO by impregnating technique to enhance the visible-light photoactivity. The produced nanostructures were utilized to generate H by photocatalytic reaction in a water/glycerol medium with platinum traces cocatalyst. The impregnation of BiS at 9.0 wt% has endorsed the photogenerated H by ∼ 8.7 folds (∼1547 µmol g h) than only using bare CoO (∼178 µmol g h) owing to bandgap reduction down to 1.71 eV and suppression of charge recombination. The dose control of 2.5 gL has augmented the H generation to 3.095 mmol g h with a significant regeneration to reach 96.5 % after the fifth run. The improved performance of the formed 9.0 % BiS/CoO heterojunction is accredited to the enhanced photocharge separation between BiS and CoO.

中文翻译:

硫化铋浸渍的氧化钴纳米晶体:一种增强型光催化剂,可提高可见光下的氢气产量

与传统能源相比,氢气(H)是最轻、最环保的燃料。 H 的生产可以通过多种技术作为可再生能源来实现。由于其简单性,纳米复合光催化剂的可见光析氢是一种新兴方法。随后,表面活性剂辅助的溶胶-凝胶方法生长出了氧化钴(CoO)纳米颗粒。通过浸渍技术将 3.0–12.0 wt% 的硫化铋 (Bi2S3) 纳米晶体添加到 CoO 中,以增强可见光光活性。所产生的纳米结构用于通过在水/甘油介质中与铂微量助催化剂的光催化反应产生H。由于带隙降低至 1.71 eV 并抑制电荷复合,9.0 wt% BiS 的浸渍比仅使用裸 CoO (~178 µmol g h) 光生 H 的光生 H 提高了约 8.7 倍 (~1547 µmol g h)。 2.5 gL 的剂量控制已将 H 生成量增加至 3.095 mmol g h,第五次运行后再生率显着达到 96.5%。所形成的 9.0% BiS/CoO 异质结的性能改进归功于 BiS 和 CoO 之间光电荷分离的增强。
更新日期:2024-04-01
down
wechat
bug