当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Low-crystallinity conductive multivalence iron sulfide-embedded S-doped anode and high-surface area O-doped cathode of 3D porous N-rich graphitic carbon frameworks for high-performance sodium-ion hybrid energy storages
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-03-27 , DOI: 10.1016/j.ensm.2024.103368 Jong Hui Choi , Dong Won Kim , Do Hwan Jung , Keon-Han Kim , Jihoon Kim , Jeung Ku Kang
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-03-27 , DOI: 10.1016/j.ensm.2024.103368 Jong Hui Choi , Dong Won Kim , Do Hwan Jung , Keon-Han Kim , Jihoon Kim , Jeung Ku Kang
Sodium-ion hybrid energy storages (SIHESs) are promising electrochemical energy storages for many applications, but their low energy and power densities are yet to be overcome. Herein, we report a strategy to realize ultrahigh-energy density and fast-rechargeable SIHESs. Ultrafine iron sulfide-embedded S-doped carbon/graphene (FS/C/G) anode materials are synthesized from iron-based metal-organic framework (MOF)/graphene oxide heterostructures via graphitic carbon formation and sulfidation. and ex-situ analyses reveal that cycled iron sulfides are rescaled into low-crystallinity conductive fragments with Fe vacancies and multivalence Fe/Fe states. Size reduction to fragments inside a 3D porous S-doped N-rich graphitic carbon framework induces high-capacity/high-rate FS/C/G performance. Moreover, 3D porous O-doped carbon cathode materials are synthesized from zeolitic imidazolate frameworks (ZIFs) via pyrolysis-assisted micropore and KOH-assisted mesopore formations. This ZIF-derived porous carbon (ZDPC) has a ∼20-fold higher surface area (3972 m/g) than conventional ZDCs, O-induced micropores/N-rich sites for high capacity, heteroatom-induced ion-accessible defects/mesopores, and N-rich conductive graphitic carbon networks. Additionally, FS/C/G//ZDPC SHHES benefits from diffusion-controlled and capacitive reactions, as demonstrated by its hitherto highest energy density of 247 Wh kg outperforming state-of-the-art SIHESs, fast-rechargeable power density (up to 34,748 W kg) exceeding battery-type reactions by more than 100 folds, and cycle stability with ∼100 % Coulombic efficiency over 5000 charge-discharge cycles.
中文翻译:
用于高性能钠离子混合储能的3D多孔富氮石墨碳框架的低结晶度导电多价硫化铁嵌入S掺杂阳极和高表面积O掺杂阴极
钠离子混合储能(SIHES)是一种有前景的电化学储能,适合许多应用,但其低能量和功率密度的问题仍有待克服。在此,我们报告了一种实现超高能量密度和快速可充电 SIHES 的策略。超细硫化铁嵌入硫掺杂碳/石墨烯(FS/C/G)负极材料是由铁基金属有机骨架(MOF)/氧化石墨烯异质结构通过石墨碳形成和硫化合成的。异位分析表明,循环硫化铁被重新调整为具有 Fe 空位和多价 Fe/Fe 态的低结晶度导电片段。将 3D 多孔硫掺杂富氮石墨碳框架内的尺寸减小为碎片,可实现高容量/高速率 FS/C/G 性能。此外,3D多孔O掺杂碳阴极材料是通过热解辅助微孔和KOH辅助介孔形成由沸石咪唑酯骨架(ZIF)合成的。这种 ZIF 衍生的多孔碳 (ZDPC) 的表面积 (3972 m/g) 比传统 ZDC 高约 20 倍,O 诱导的微孔/富氮位点可实现高容量、杂原子诱导的离子可接近缺陷/介孔,和富氮导电石墨碳网络。此外,FS/C/G//ZDPC SHHES 受益于扩散控制和电容反应,其迄今为止最高的能量密度为 247 Wh kg,优于最先进的 SIHES、快速充电功率密度(高达34,748 W kg)超过电池类型反应 100 倍以上,并且在 5000 次充放电循环中具有~100% 库仑效率的循环稳定性。
更新日期:2024-03-27
中文翻译:
用于高性能钠离子混合储能的3D多孔富氮石墨碳框架的低结晶度导电多价硫化铁嵌入S掺杂阳极和高表面积O掺杂阴极
钠离子混合储能(SIHES)是一种有前景的电化学储能,适合许多应用,但其低能量和功率密度的问题仍有待克服。在此,我们报告了一种实现超高能量密度和快速可充电 SIHES 的策略。超细硫化铁嵌入硫掺杂碳/石墨烯(FS/C/G)负极材料是由铁基金属有机骨架(MOF)/氧化石墨烯异质结构通过石墨碳形成和硫化合成的。异位分析表明,循环硫化铁被重新调整为具有 Fe 空位和多价 Fe/Fe 态的低结晶度导电片段。将 3D 多孔硫掺杂富氮石墨碳框架内的尺寸减小为碎片,可实现高容量/高速率 FS/C/G 性能。此外,3D多孔O掺杂碳阴极材料是通过热解辅助微孔和KOH辅助介孔形成由沸石咪唑酯骨架(ZIF)合成的。这种 ZIF 衍生的多孔碳 (ZDPC) 的表面积 (3972 m/g) 比传统 ZDC 高约 20 倍,O 诱导的微孔/富氮位点可实现高容量、杂原子诱导的离子可接近缺陷/介孔,和富氮导电石墨碳网络。此外,FS/C/G//ZDPC SHHES 受益于扩散控制和电容反应,其迄今为止最高的能量密度为 247 Wh kg,优于最先进的 SIHES、快速充电功率密度(高达34,748 W kg)超过电池类型反应 100 倍以上,并且在 5000 次充放电循环中具有~100% 库仑效率的循环稳定性。