当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photoexcited Hot Electron Catalysis in Plasmon-Resonant Grating Structures with Platinum, Nickel, and Ruthenium Coatings
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-04-02 , DOI: 10.1021/acsami.3c16462
Indu Aravind 1 , Yu Yun Wang 2 , Yu Wang 3 , Ruoxi Li 3 , Zhi Cai 3 , Bofan Zhao 2 , Boxin Zhang 3 , Sizhe Weng 2 , Rifat Shahriar 2 , Stephen B Cronin 1, 2, 4
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-04-02 , DOI: 10.1021/acsami.3c16462
Indu Aravind 1 , Yu Yun Wang 2 , Yu Wang 3 , Ruoxi Li 3 , Zhi Cai 3 , Bofan Zhao 2 , Boxin Zhang 3 , Sizhe Weng 2 , Rifat Shahriar 2 , Stephen B Cronin 1, 2, 4
Affiliation
![]() |
We report the electrochemical potential dependence of photocatalysis produced by hot electrons in plasmon-resonant grating structures. Here, corrugated metal surfaces with a period of 520 nm are illuminated with 785 nm wavelength laser light swept as a function of incident angle. At incident angles corresponding to plasmon-resonant excitation, we observe sharp peaks in the electrochemical photocurrent and dips in the photoreflectance consistent with the conditions under which there is wavevector matching between the incident light and the spacing between the lines in the grating. In addition to the bare plasmonic metal surface (i.e., Au), which is catalytically inert, we have measured grating structures with a thin layer of Pt, Ru, and Ni catalyst coatings. For the bare Au grating, we observe that the plasmon-resonant photocurrent remains relatively featureless over the applied potential range from −0.8 to +1.2 V vs NHE. For the Pt-coated grating, we observe a sharp peak around −0.3 V vs NHE, three times larger than the bare Au grating, and near complete suppression of the oxidation half-reaction, reflecting the reducing nature of Pt as a good hydrogen evolution reaction catalyst. The photocurrent associated with the Pt-coated grating is less noisy and produces higher photocurrents than the bare Au grating due to the faster kinetics (i.e., charge transfer) associated with the Pt-coated surface. The plasmon-resonant grating structures enable us to compare plasmon-resonant excitation with that of bulk metal interband absorption simply by rotating the polarization of the light while leaving all other parameters of the experiment fixed (i.e., wavelength, potential, electrochemical solution, sample surface, etc.). A 64X plasmon-resonant enhancement (i.e., p-to-s polarized photocurrent ratio) is observed for the Pt-coated grating compared to 28X for the bare grating. The nickel-coated grating shows an increase in the hot-electron photocurrent enhancement in both oxidation and reduction half-reactions. Similarly, Ru-coated gratings show an increase in hot-electron photocurrents in the oxidation half-reaction compared to the bare Au grating. Plasmon-resonant enhancement factors of 36X and 15X are observed in the p-to-s polarized photocurrent ratio for the Ni and Ru gratings, respectively.
中文翻译:
铂、镍和钌涂层等离子共振光栅结构中的光激发热电子催化
我们报告了等离子共振光栅结构中热电子产生的光催化的电化学势依赖性。此处,周期为 520 nm 的波纹金属表面用 785 nm 波长的激光进行照射,该激光作为入射角的函数进行扫描。在与等离激元共振激发相对应的入射角处,我们观察到电化学光电流的尖锐峰值和光反射率的下降,这与入射光和光栅线之间的间距之间存在波矢匹配的条件一致。除了具有催化惰性的裸露等离子体金属表面(即 Au)之外,我们还测量了具有薄层 Pt、Ru 和 Ni 催化剂涂层的光栅结构。对于裸金光栅,我们观察到等离激元共振光电流在-0.8至+1.2 V vs NHE的施加电势范围内保持相对无特征。对于 Pt 涂层光栅,我们观察到 -0.3 V vs NHE 附近的尖峰,比裸金光栅大三倍,并且几乎完全抑制氧化半反应,反映了 Pt 的还原性质作为良好的析氢反应催化剂。由于与 Pt 涂层表面相关的更快的动力学(即电荷转移),与裸金光栅相比,与 Pt 涂层光栅相关的光电流噪音较小,并且产生更高的光电流。等离子体共振光栅结构使我们能够通过旋转光的偏振,同时保持实验的所有其他参数固定(即波长、电势、电化学溶液、样品表面)来比较等离子体共振激发与体金属带间吸收的激发。 , ETC。)。 64X 等离子体共振增强(即与裸光栅的 28X 相比,镀 Pt 的光栅观察到 p-s 偏振光电流比 (p-to-s 偏振光电流比)。镀镍光栅在氧化和还原半反应中显示出热电子光电流增强的增加。类似地,与裸金光栅相比,镀钌光栅在氧化半反应中显示出热电子光电流的增加。 Ni 和 Ru 光栅的 p-s 偏振光电流比分别观察到 36X 和 15X 的等离子共振增强因子。
更新日期:2024-04-02
中文翻译:

铂、镍和钌涂层等离子共振光栅结构中的光激发热电子催化
我们报告了等离子共振光栅结构中热电子产生的光催化的电化学势依赖性。此处,周期为 520 nm 的波纹金属表面用 785 nm 波长的激光进行照射,该激光作为入射角的函数进行扫描。在与等离激元共振激发相对应的入射角处,我们观察到电化学光电流的尖锐峰值和光反射率的下降,这与入射光和光栅线之间的间距之间存在波矢匹配的条件一致。除了具有催化惰性的裸露等离子体金属表面(即 Au)之外,我们还测量了具有薄层 Pt、Ru 和 Ni 催化剂涂层的光栅结构。对于裸金光栅,我们观察到等离激元共振光电流在-0.8至+1.2 V vs NHE的施加电势范围内保持相对无特征。对于 Pt 涂层光栅,我们观察到 -0.3 V vs NHE 附近的尖峰,比裸金光栅大三倍,并且几乎完全抑制氧化半反应,反映了 Pt 的还原性质作为良好的析氢反应催化剂。由于与 Pt 涂层表面相关的更快的动力学(即电荷转移),与裸金光栅相比,与 Pt 涂层光栅相关的光电流噪音较小,并且产生更高的光电流。等离子体共振光栅结构使我们能够通过旋转光的偏振,同时保持实验的所有其他参数固定(即波长、电势、电化学溶液、样品表面)来比较等离子体共振激发与体金属带间吸收的激发。 , ETC。)。 64X 等离子体共振增强(即与裸光栅的 28X 相比,镀 Pt 的光栅观察到 p-s 偏振光电流比 (p-to-s 偏振光电流比)。镀镍光栅在氧化和还原半反应中显示出热电子光电流增强的增加。类似地,与裸金光栅相比,镀钌光栅在氧化半反应中显示出热电子光电流的增加。 Ni 和 Ru 光栅的 p-s 偏振光电流比分别观察到 36X 和 15X 的等离子共振增强因子。