当前位置: X-MOL 学术SIAM J. Numer. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cut Finite Element Method for Divergence-Free Approximation of Incompressible Flow: A Lagrange Multiplier Approach
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-04-01 , DOI: 10.1137/22m1542933
Erik Burman 1 , Peter Hansbo 2 , Mats Larson 3
Affiliation  

SIAM Journal on Numerical Analysis, Volume 62, Issue 2, Page 893-918, April 2024.
Abstract. In this note, we design a cut finite element method for a low order divergence-free element applied to a boundary value problem subject to Stokes’ equations. For the imposition of Dirichlet boundary conditions, we consider either Nitsche’s method or a stabilized Lagrange multiplier method. In both cases, the normal component of the velocity is constrained using a multiplier, different from the standard pressure approximation. The divergence of the approximate velocities is pointwise zero over the whole mesh domain, and we derive optimal error estimates for the velocity and pressures, where the error constant is independent of how the physical domain intersects the computational mesh, and of the regularity of the pressure multiplier imposing the divergence-free condition.


中文翻译:

不可压缩流无散逼近的割有限元法:拉格朗日乘子法

《SIAM 数值分析杂志》,第 62 卷,第 2 期,第 893-918 页,2024 年 4 月
。摘要。在本文中,我们设计了一种低阶无散度单元的切割有限元方法,应用于受斯托克斯方程影响的边值问题。对于狄利克雷边界条件的施加,我们考虑尼采方法或稳定拉格朗日乘数方法。在这两种情况下,速度的法向分量都使用乘数来约束,这与标准压力近似不同。在整个网格域上,近似速度的散度逐点为零,并且我们得出速度和压力的最佳误差估计,其中误差常数独立于物理域与计算网格的相交方式以及压力的规律性施加无散条件的乘数。
更新日期:2024-04-02
down
wechat
bug